1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
//! # Let It Snow
//!
//! There are two parts to solving this problem.
//!
//! The first is converting the row and column to an *zero based* index. Using the example of
//! the 12th code at row 4 column 2:
//!
//! ```none
//! | 1 2 3 4 5 6
//! ---+---+---+---+---+---+---+
//! 1 | 1 3 6 10 15 21
//! 2 | 2 5 9 14 20
//! 3 | 4 8 13 19
//! 4 | 7 12 18
//! 5 | 11 17
//! 6 | 16
//! ```
//!
//! First we observe that the numbers on the top row are the
//! [triangular numbers](https://en.wikipedia.org/wiki/Triangular_number) that can be calculated
//! with the formula `(n * (n + 1)) / 2` for the `nth` number.
//!
//! Starting at the chosen number 12 and moving diagonally upwards to the right we intersect
//! the top row at column `column + row - 1 = 2 + 4 - 1 = 5`. This gives the triangular number
//! `5 * (5 + 1) / 2 = 15`. Then we count backwards by `row` elements to get the one less
//! zero based based index `15 - 4 = 11`.
//!
//! The second part is realizing that the description of the code generation is
//! [modular exponentiation](https://en.wikipedia.org/wiki/Modular_exponentiation). The exponent
//! of the first code is zero, which is the reason for using a zero based index.
use crate::util::iter::*;
use crate::util::math::*;
use crate::util::parse::*;
type Input = [u64; 2];
pub fn parse(input: &str) -> Input {
input.iter_unsigned().chunk::<2>().next().unwrap()
}
pub fn part1(input: &Input) -> u64 {
let [row, column] = *input;
let n = column + row - 1;
let triangle = (n * (n + 1)) / 2;
let index = triangle - row;
(20151125 * 252533.mod_pow(index, 33554393)) % 33554393
}
pub fn part2(_input: &Input) -> &'static str {
"n/a"
}