1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
//! # Air Duct Spelunking
//!
//! This is a variant of the classic
//! [Travelling Salesman Problem](https://en.wikipedia.org/wiki/Travelling_salesman_problem) and
//! is similar to [`Year 2015 Day 13`].
//!
//! We first simplify the problem by finding the distance between all locations using multiple
//! [BFS](https://en.wikipedia.org/wiki/Breadth-first_search)
//! searches starting from each location.
//!
//! For speed we convert each location into an index, then store the distances between
//! every pair of locations in an vec for fast lookup. Our utility [`permutations`] method uses
//! [Heap's algorithm](https://en.wikipedia.org/wiki/Heap%27s_algorithm) for efficiency,
//! modifying the slice in place.
//!
//! There are 8 locations, however since we always start at `0` this requires checking only
//! 7! = 5,040 permutations. We find the answer to both part one and two simultaneously.
//!
//! [`permutations`]: crate::util::slice
//! [`Year 2015 Day 13`]: crate::year2015::day13
use crate::util::grid::*;
use crate::util::parse::*;
use crate::util::slice::*;
use std::collections::VecDeque;
type Input = (u32, u32);
pub fn parse(input: &str) -> Input {
let grid = Grid::parse(input);
let found: Vec<_> =
grid.bytes.iter().enumerate().filter(|(_, b)| b.is_ascii_digit()).map(|(i, _)| i).collect();
let stride = found.len();
let mut distance = vec![0; stride * stride];
// BFS from each location. As a minor optimization we reuse `todo` and `visited`.
let mut todo = VecDeque::new();
let mut visited = vec![0; grid.bytes.len()];
let orthogonal = [1, -1, grid.width, -grid.width].map(|i| i as usize);
for start in found {
let from = grid.bytes[start].to_decimal() as usize;
todo.push_back((start, 0));
visited[start] = start;
while let Some((index, steps)) = todo.pop_front() {
if grid.bytes[index].is_ascii_digit() {
let to = grid.bytes[index].to_decimal() as usize;
distance[stride * from + to] = steps;
}
for offset in orthogonal {
let next_index = index.wrapping_add(offset);
if grid.bytes[next_index] != b'#' && visited[next_index] != start {
visited[next_index] = start;
todo.push_back((next_index, steps + 1));
}
}
}
}
// Solve both parts simultaneously.
let mut part_one = u32::MAX;
let mut part_two = u32::MAX;
let mut indices: Vec<_> = (1..stride).collect();
indices.permutations(|slice| {
let link = |from, to| distance[stride * from + to];
let first = link(0, slice[0]);
let middle = slice.windows(2).map(|w| link(w[0], w[1])).sum::<u32>();
let last = link(slice[slice.len() - 1], 0);
part_one = part_one.min(first + middle);
part_two = part_two.min(first + middle + last);
});
(part_one, part_two)
}
pub fn part1(input: &Input) -> u32 {
input.0
}
pub fn part2(input: &Input) -> u32 {
input.1
}