1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
//! # Recursive Circus
//!
//! Tree structures are tricky to implement in Rust, requiring wrapping the pointer in a [`Rc`].
//! To avoid this we store the tree "upside down" with each node containing a single index to its
//! parent, stored in a flat `vec`.
//!
//! We rely on a special structure of the input that the unbalanced node requiring change will
//! always be the lowest node in the tree and have at least two other balanced siblings
//! so that we can disambiguate.
//!
//! [`Rc`]: std::rc::Rc
use crate::util::hash::*;
use crate::util::parse::*;
use std::collections::VecDeque;
#[derive(Clone, Copy, Default)]
struct Node {
has_parent: bool,
parent: usize,
children: usize,
processed: usize,
weight: i32,
total: i32,
sub_weights: [i32; 2],
sub_totals: [i32; 2],
}
type Input<'a> = (&'a str, i32);
pub fn parse(input: &str) -> Input<'_> {
// Split each line into the program name then the rest of the information.
let pairs: Vec<_> = input.lines().map(|line| line.split_once(' ').unwrap()).collect();
// Convert each program name into a fixed index so that we can use faster vec lookups
// later on when processing the tree.
let indices: FastMap<_, _> = pairs.iter().enumerate().map(|(i, &(key, _))| (key, i)).collect();
// Create a vec of the correct size with default values.
let mut nodes = vec![Node::default(); indices.len()];
// We'll process nodes from leaf to root.
let mut todo = VecDeque::new();
for (i, &(_, suffix)) in pairs.iter().enumerate() {
// Remove delimiters.
let mut iter = suffix.split(|c: char| !c.is_ascii_alphanumeric()).filter(|s| !s.is_empty());
let weight = iter.next().unwrap().signed();
nodes[i].weight = weight;
nodes[i].total = weight;
for edge in iter {
nodes[i].children += 1;
let child = indices[edge];
nodes[child].parent = i;
nodes[child].has_parent = true;
}
// Start with leaf nodes.
if nodes[i].children == 0 {
todo.push_back(i);
}
}
// The root is the only node without a parent.
let part_one = indices.iter().find(|(_, v)| !nodes[**v].has_parent).unwrap().0;
let mut part_two = 0;
while let Some(index) = todo.pop_front() {
let Node { parent, weight, total, .. } = nodes[index];
let node = &mut nodes[parent];
if node.processed < 2 {
// Fill out the first two children in any order.
node.sub_weights[node.processed] = weight;
node.sub_totals[node.processed] = total;
} else {
// Representing the balanced nodes as `b` and the unbalanced node as `u`,
// there are 4 possibilities:
// b + [b b] => [b b] Swap
// b + [b u] => [u b] Swap
// u + [b b] -> [u b] Overwrite
// b + [u b] => [u b] Do nothing
// The unbalanced node will always be first (if it exists).
if node.sub_totals[0] == total {
node.sub_weights.swap(0, 1);
node.sub_totals.swap(0, 1);
} else if node.sub_totals[1] != total {
node.sub_weights[0] = weight;
node.sub_totals[0] = total;
}
}
// Total is a nodes weight plus the sum of all children recursively.
node.total += total;
node.processed += 1;
// If we've processed all children then add to the queue and check balance.
if node.processed == node.children {
todo.push_back(parent);
// The unbalanced node will always be first, due to the way we swap the weight
// when processing children.
if node.children >= 3 {
let [w, _] = node.sub_weights;
let [x, y] = node.sub_totals;
if x != y {
part_two = w - x + y;
break;
}
}
}
}
(part_one, part_two)
}
pub fn part1<'a>(input: &Input<'a>) -> &'a str {
input.0
}
pub fn part2(input: &Input<'_>) -> i32 {
input.1
}