1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
//! # Particle Swarm
//!
//! ## Part One
//!
//! The particle that remains closest to the origin as time goes to infinity has the lowest
//! acceleration, measured via its manhattan value. If more than one particle shares the same
//! lowest acceleration then ties are broken by velocity then by position.
//!
//! ## Part Two
//!
//! The input is constructed so that all collisions happen within 40 ticks so a simple brute force
//! solution is much faster than more elegant alternatives, for example solving the quadratic
//! equation describing each particle's position.
use crate::util::hash::*;
use crate::util::iter::*;
use crate::util::parse::*;
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
struct Vector {
x: i32,
y: i32,
z: i32,
}
impl Vector {
fn new(cs: [i32; 3]) -> Self {
Vector { x: cs[0], y: cs[1], z: cs[2] }
}
fn manhattan(&self) -> i32 {
self.x.abs() + self.y.abs() + self.z.abs()
}
fn tick(&mut self, other: &Vector) {
self.x += other.x;
self.y += other.y;
self.z += other.z;
}
}
#[derive(Copy, Clone)]
pub struct Particle {
id: usize,
position: Vector,
velocity: Vector,
acceleration: Vector,
}
impl Particle {
fn tick(&mut self) {
self.velocity.tick(&self.acceleration);
self.position.tick(&self.velocity);
}
}
pub fn parse(input: &str) -> Vec<Particle> {
input
.iter_signed()
.chunk::<3>()
.chunk::<3>()
.enumerate()
.map(|(id, cs)| Particle {
id,
position: Vector::new(cs[0]),
velocity: Vector::new(cs[1]),
acceleration: Vector::new(cs[2]),
})
.collect()
}
pub fn part1(input: &[Particle]) -> usize {
let mut candidates = Vec::new();
let mut min = i32::MAX;
// Find particles with the lowest acceleration.
for particle in input {
let next = particle.acceleration.manhattan();
if next < min {
candidates.clear();
min = next;
}
if next == min {
candidates.push(*particle);
}
}
// Ensure all acceleration, velocity and position vectors are "aligned", that is the
// sign of each component is the same, for example a particle with a negative x acceleration
// should also have a negative x velocity and negative x position.
for _ in 0..1000 {
candidates.iter_mut().for_each(Particle::tick);
}
// Tie break by velocity then by position.
candidates.sort_unstable_by(|a, b| {
let first = a.velocity.manhattan().cmp(&b.velocity.manhattan());
let second = a.position.manhattan().cmp(&b.position.manhattan());
first.then(second)
});
candidates[0].id
}
pub fn part2(input: &[Particle]) -> usize {
let mut particles = input.to_vec();
let mut collisions = FastMap::with_capacity(input.len());
let mut exists = vec![i64::MAX; input.len()];
for time in 1..40 {
for (i, particle) in particles.iter_mut().enumerate() {
// Only consider particles that haven't collided in a previous tick.
// Multiple particles can collide in the same tick.
if exists[i] >= time {
particle.tick();
if let Some(j) = collisions.insert(particle.position, i) {
exists[i] = time;
exists[j] = time;
}
}
}
collisions.clear();
}
exists.iter().filter(|&&t| t == i64::MAX).count()
}