1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
//! # Chocolate Charts
//!
//! This solution is heavily inspired by [Askalski's](https://www.reddit.com/user/askalski/)
//! excellent post [Breaking the 1 billion recipes per second barrier](https://www.reddit.com/r/adventofcode/comments/a6wpwa/2018_day_14_breaking_the_1_billion_recipes_per/)
//!
//! The key insight is that after 23 recipes the elves converge into using the *same subset* of
//! recipes. This subset can be stored compactly in about 20% of the space and read sequentially
//! to allow efficient vector processing.
//!
//! Tricks used to speed things up:
//! * Separate writer and reader threads to generate recipes and check them in parallel.
//! * Vector processing of recipes using techniques similar to SIMD.
use crate::util::parse::*;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::mpsc::{channel, Receiver, Sender};
use std::thread;
type Input = (String, usize);
/// Pre-calculate the first 23 recipes.
const PREFIX: [u8; 23] = [3, 7, 1, 0, 1, 0, 1, 2, 4, 5, 1, 5, 8, 9, 1, 6, 7, 7, 9, 2, 5, 1, 0];
pub fn parse(input: &str) -> Input {
// Send batches of recipes from the writer to the reader for checking.
let (tx, rx) = channel();
// Thread safe flag to let writer know when to stop.
let done = AtomicBool::new(false);
// Store recipes in fixed size vec prefilled with ones. Part two result is around 20 million
// so size should be sufficient for most inputs.
let mut recipes = vec![1; 25_000_000];
thread::scope(|scope| {
// Start writer thread to produce new recipes.
scope.spawn(|| writer(tx, &done, recipes.as_mut_slice()));
// Reader thread checks recipes for the answers, returning when both parts are found.
scope.spawn(|| reader(rx, &done, input)).join().unwrap()
})
}
pub fn part1(input: &Input) -> &str {
&input.0
}
pub fn part2(input: &Input) -> usize {
input.1
}
/// Receives batches of recipes from the writer thread, then scans them byte by byte searching
/// for the part two pattern. For simplicity the pattern is always assumed to by six digits.
fn reader(rx: Receiver<&[u8]>, done: &AtomicBool, input: &str) -> (String, usize) {
let part_one_target = input.unsigned::<usize>() + 10;
let part_two_target = u32::from_str_radix(input.trim(), 16).unwrap();
let mut part_one_result = None;
let mut part_two_result = None;
let mut history = Vec::new();
let mut total = 0;
let mut pattern = 0;
for slice in rx {
history.push(slice);
total += slice.len();
// The recipes are broken up into batches. Even though these batches originally come
// from the same contiguous slice, this thread has no way to know that or reassemble
// the original. The result could potentially be split over two or more slices.
if part_one_result.is_none() && total >= part_one_target {
let mut index = 0;
let mut offset = part_one_target - 10;
let mut result = String::new();
for _ in 0..10 {
// If we go past the end of a slice then check the next one.
while offset >= history[index].len() {
offset -= history[index].len();
index += 1;
}
// Push each digit into a string as there could be leading zeroes.
let digit = history[index][offset];
result.push((digit + b'0') as char);
offset += 1;
}
part_one_result = Some(result);
}
// Simple brute force pattern matching. Slices are received in order so the pattern will
// handle cases when the target is split between two slices.
if part_two_result.is_none() {
for (i, n) in slice.iter().copied().enumerate() {
pattern = ((pattern << 4) | (n as u32)) & 0xffffff;
if pattern == part_two_target {
part_two_result = Some(total - slice.len() + i - 5);
break;
}
}
}
// Signal the writer thread to finish once both results are found.
if part_one_result.is_some() && part_two_result.is_some() {
done.store(true, Ordering::Relaxed);
break;
}
}
(part_one_result.unwrap(), part_two_result.unwrap())
}
/// Generates recipes then sends them to the reader thread for checking in batches.
/// Processing is broken into alternating "cold" and "hot" loops. An outer enclosing loop checks
/// periodically for the done signal from the reader thread.
///
/// The "cold" loop processes recipes serially one by one but can handle input corner cases.
/// It's used when either:
/// * One or both elves are within the first 23 recipes.
/// * One or both elves are within the last 16 recipes.
///
/// The "hot" loop processes recipes efficiently in chunks of 16. The vast majority of recipes
/// are calculated in this loop. As much as possible is parallelized using techniques similar to
/// SIMD but using regular instructions instead of SIMD instrinsics or Rust's portable SIMD API.
///
/// Interestingly on an Apple M2 Max this "poor man's SIMD" has the same performance as using
/// the portable SIMD API. This is probably due to the fact that the serial loops that write new
/// recipes take the majority of the time.
fn writer<'a>(tx: Sender<&'a [u8]>, done: &AtomicBool, mut recipes: &'a mut [u8]) {
// The first 23 recipes have already been generated
// so the elves start at position 0 and 8 respectively.
let mut elf1 = 0;
let mut index1 = 0;
let mut elf2 = 8;
let mut index2 = 0;
let mut base = 0;
let mut size = 23;
let mut needed = 23;
// Store the smaller subset of recipes used by the elves.
let mut write = 0;
let mut snack: Vec<u8> = vec![0; 5_000_000];
while !done.load(Ordering::Relaxed) {
// Cold loop to handle start and end transitions.
while elf1 < 23 || elf2 < 23 || write - index1.max(index2) <= 16 {
// After the first 23 recipes both elves converge on the same set of ingredients.
let recipe1 = if elf1 < 23 {
PREFIX[elf1]
} else {
index1 += 1;
snack[index1 - 1]
};
let recipe2 = if elf2 < 23 {
PREFIX[elf2]
} else {
index2 += 1;
snack[index2 - 1]
};
// Add next recipe.
let next = recipe1 + recipe2;
if next < 10 {
recipes[size - base] = next;
size += 1;
} else {
recipes[size - base + 1] = next - 10;
size += 2;
}
if needed < size {
let digit = recipes[needed - base];
needed += 1 + digit as usize;
snack[write] = digit;
write += 1;
}
// Wrap around to start if necessary.
elf1 += 1 + recipe1 as usize;
if elf1 >= size {
elf1 -= size;
index1 = 0;
}
elf2 += 1 + recipe2 as usize;
if elf2 >= size {
elf2 -= size;
index2 = 0;
}
}
// Hot loop to handle the majority of recipes in the middle. Process at most 10,000 recipes
// at a time in order to produce batches between 160,000 and 320,000 bytes in size.
// This size is roughly tuned in order to maximize reader thread throughput.
let batch_size = 10_000.min((write - index1.max(index2) - 1) / 16);
for _ in 0..batch_size {
// Snacks can be processed sequentially.
let first = from_be_bytes(&snack, index1);
let second = from_be_bytes(&snack, index2);
let third = from_be_bytes(&snack, index1 + 8);
let fourth = from_be_bytes(&snack, index2 + 8);
// Each elf will skip forward between 16 and 32 snacks.
elf1 += 16 + lsb(prefix_sum(first)) + lsb(prefix_sum(third));
elf2 += 16 + lsb(prefix_sum(second)) + lsb(prefix_sum(fourth));
index1 += 16;
index2 += 16;
// Process the digits in parallel using techniques similar to SIMD.
let (digits1, indices1, extra1) = unpack(first, second);
let (digits2, indices2, extra2) = unpack(third, fourth);
// Scatter each digit into the correct location, leaving "holes" where ones should go.
// This is handled correctly by prefilling `recipes`` with ones when initializing.
for shift in (0..64).step_by(8) {
let digit = lsb(digits1 >> shift);
let index = lsb(indices1 >> shift);
recipes[size - base + index] = digit as u8;
let digit = lsb(digits2 >> shift);
let index = lsb(indices2 >> shift);
recipes[size - base + index + extra1] = digit as u8;
}
size += extra1 + extra2;
// Write the recipes that will actually be used in subsequent loops to a smaller
// contiguous vec.
while needed < size {
let digit = recipes[needed - base];
needed += 1 + digit as usize;
snack[write] = digit;
write += 1;
}
}
// Split the mutable `recipes` slice into two parts. This allows the reader thread to
// access the head in parallel while the reader thread continues to write to the tail,
// ensuring unique ownership of each part of memory to prevent any concurrency issues.
let (head, tail) = recipes.split_at_mut(size - base);
let _unused = tx.send(head);
recipes = tail;
base = size;
}
// Drop the sender to make the receiver hang up.
drop(tx);
}
/// Convert 8 bytes in [big endian order](https://en.wikipedia.org/wiki/Endianness) into a `usize`.
#[inline]
fn from_be_bytes(slice: &[u8], index: usize) -> usize {
usize::from_be_bytes(slice[index..index + 8].try_into().unwrap())
}
/// Convenience function that returns least significant byte.
#[inline]
fn lsb(u: usize) -> usize {
u & 0xff
}
/// Compute the prefix sum of each byte within a `usize`. Let `a..h` denote the bytes from most
/// significant to least significant and `Σx..y` denote the sum from `x` to `y` inclusive.
///
/// ```none
/// s | a | b | c | d | e | f | g | h |
/// s += (s >> 8) | a | Σa..b | Σb..c | Σc..d | Σd..e | Σe..f | Σf..g | Σg..h |
/// s += (s >> 16) | a | Σa..b | Σa..c | Σa..d | Σb..e | Σc..f | Σd..g | Σe..h |
/// s += (s >> 32) | a | Σa..b | Σa..c | Σa..d | Σa..e | Σa..f | Σa..g | Σa..h |
/// ```
#[inline]
fn prefix_sum(u: usize) -> usize {
let mut s = u;
s += s >> 8;
s += s >> 16;
s += s >> 32;
s
}
/// Takes two groups of 8 digits each packed into a `usize` as input, then returns the output
/// digits and their respective locations. Ones from sums greater than ten are implicit and not
/// included since recipes has already been pre-filled with ones.
#[inline]
fn unpack(first: usize, second: usize) -> (usize, usize, usize) {
const ONES: usize = 0x0101010101010101;
const SIXES: usize = 0x0606060606060606;
const INDICES: usize = 0x0001020304050607;
// Example values, showing each byte in a columm:
//
// first | 04 | 01 | 09 | 08 | 00 | 03 | 05 | 07 |
// second | 03 | 00 | 02 | 04 | 09 | 06 | 05 | 01 |
// sum | 07 | 01 | 0b | 0c | 09 | 09 | 0a | 08 |
let sum = first + second;
// Add 6 to each byte so that sums greater than or equal to ten become greater than or equal
// to 16, setting the first bit in the high nibble of each byte.
//
// sum | 07 | 01 | 0b | 0c | 09 | 09 | 0a | 08 |
// SIXES | 06 | 06 | 06 | 06 | 06 | 06 | 06 | 06 |
// total | 0d | 07 | 11 | 12 | 0f | 0f | 10 | 0e |
// tens | 00 | 00 | 01 | 01 | 00 | 00 | 01 | 00 |
let tens = ((sum + SIXES) >> 4) & ONES;
// Multiply by 10 to "spread" a 10 into each byte that has a total greater than 10.
//
// tens | 00 | 00 | 01 | 01 | 00 | 00 | 01 | 00 |
// tens * 10 | 00 | 00 | 0a | 0a | 00 | 00 | 0a | 00 |
// digits | 07 | 01 | 01 | 02 | 09 | 09 | 00 | 08 |
let digits = sum - 10 * tens;
// Columns greater than 10 will takes 2 bytes when written to recipes. Each index is
// offset by the number of 10s before it. Adding the normal increase indices gives the
// final location of each byte.
//
// tens | 00 | 00 | 01 | 01 | 00 | 00 | 01 | 00 |
// prefix sum | 00 | 00 | 01 | 02 | 02 | 02 | 03 | 03 |
// INDICES | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 |
// indices | 00 | 02 | 03 | 05 | 06 | 07 | 09 | 0a |
let indices = prefix_sum(tens) + INDICES;
// The total number of bytes that need to be written is one plus the last index.
let extra = 1 + lsb(indices);
(digits, indices, extra)
}