1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
//! # Beverage Bandits
//!
//! This problem is notoriously tricky due to the finicky rules that must be followed precisely and
//! that not all inputs trigger all edge cases. However from a performance aspect most of the time
//! is consumed finding the nearest target whenever a unit needs to move.
//!
//! For each move we perform two [BFS](https://en.wikipedia.org/wiki/Breadth-first_search).
//! The first search from the current unit finds the nearest target in reading order.
//! The second *reverse* search from the target to the current unit finds the correct direction
//! to move.
//!
//! Since the cave dimensions are 32 x 32 we use a fixed sized array of bitmasks stored in `u32`
//! to execute each BFS efficiently. Each step we expand the frontier using the bitwise logic
//! applied to each row:
//!
//! ```none
//! (previous | (current << 1) | current | (current >> 1) | next) & !walls
//! ```
//!
//! We represent the goal using bits and stop searching once that intersects with the frontier.
//! First example:
//!
//! * Goblin's turn.
//! * We should choose the first target square in reading order (to the right of the nearest elf)
//! * There are two equal shortest paths to that square, so we should choose the first *step* in
//! reading order (up).
//!
//! ```none
//! Map Walls In Range
//! ####### 1111111 0000000
//! #E # 1000001 0110000
//! # E # 1000001 0111000
//! # G# 1000001 0010000
//! ####### 1111111 0000000
//!
//! Forward BFS frontier Intersection
//! 0000000 0000000 0000000 0000000 0000000
//! 0000000 0000000 0000010 0000110 0000000
//! 0000000 => 0000010 => 0000110 => 0001110 => 0001000 <= Choose first target square
//! 0000010 0000110 0001110 0011110 0010000 in reading order
//! 0000000 0000000 0000000 0000000 0000000
//!
//! Reverse BFS frontier Intersection
//! 0000000 0000000 0000000 0000000
//! 0000000 0001000 0011100 0000000
//! 0001000 => 0011100 => 0111110 => 0000010 <= Choose first step
//! 0000000 0001000 0011100 0000100 in reading order
//! 0000000 0000000 0000000 0000000
//! ```
//!
//! Choosing the first intersection in reading order the Goblin correctly moves upwards.
//! Second example:
//!
//! * Elf's turn.
//! * There are two equal shortest paths.
//! * We should choose the first *unit* in reading order (left).
//!
//! ```none
//! Map Walls In Range
//! ########### 11111111111 00000000000
//! #G..#....G# 10001000001 01100000110
//! ###..E##### 11100011111 00000000000
//! ########### 11111111111 00000000000
//!
//! Forward BFS frontier Intersection
//! 00000000000 00000000000 00000000000 00000000000 00000000000 00000000000
//! 00000000000 00000100000 00000110000 00010111000 00110111100 00100000100
//! 00000100000 => 00001100000 => 00011100000 => 00011100000 => 00011100000 => 00000000000
//! 00000000000 00000000000 00000000000 00000000000 00000000000 00000000000
//!
//! Reverse BFS frontier Intersection
//! 00000000000 00000000000 00000000000 00000000000 00000000000
//! 00100000000 01110000000 01110000000 01110000000 00000000000
//! 00000000000 => 00000000000 => 00010000000 => 00011000000 => 00001000000
//! 00000000000 00000000000 00000000000 00000000000 00000000000
//! ```
//!
//! Choosing the first intersection in reading order the Elf correctly moves left.
use crate::util::grid::*;
use crate::util::point::*;
use crate::util::thread::*;
use std::sync::atomic::{AtomicBool, AtomicI32, Ordering};
use std::sync::mpsc::{channel, Sender};
const READING_ORDER: [Point; 4] = [UP, LEFT, RIGHT, DOWN];
pub struct Input {
walls: [u32; 32],
elves: Vec<Point>,
goblins: Vec<Point>,
}
#[derive(Clone, Copy, PartialEq, Eq)]
enum Kind {
Elf,
Goblin,
}
#[derive(Clone, Copy)]
struct Unit {
position: Point,
kind: Kind,
health: i32,
power: i32,
}
/// Shared between threads for part two.
struct Shared {
done: AtomicBool,
elf_attack_power: AtomicI32,
tx: Sender<(i32, i32)>,
}
/// Parse the input into a bitmask for the cave walls
/// and a list of point coordinates for each Elf and Goblin.
pub fn parse(input: &str) -> Input {
let grid = Grid::parse(input);
let mut walls = [0; 32];
let mut elves = Vec::new();
let mut goblins = Vec::new();
for y in 0..grid.height {
for x in 0..grid.width {
let position = Point::new(x, y);
match grid[position] {
b'#' => set_bit(&mut walls, position),
b'E' => elves.push(position),
b'G' => goblins.push(position),
_ => (),
}
}
}
Input { walls, elves, goblins }
}
/// Simulate a full fight until only Goblins remain.
pub fn part1(input: &Input) -> i32 {
fight(input, 3, false).unwrap()
}
/// Find the lowest attack power where no Elf dies. We can short circuit any fight once a
/// single Elf is killed. Since each fight is independent we can parallelize the search over
/// multiple threads.
pub fn part2(input: &Input) -> i32 {
let (tx, rx) = channel();
let shared = Shared { done: AtomicBool::new(false), elf_attack_power: AtomicI32::new(4), tx };
// Use as many cores as possible to parallelize the search.
spawn(|| worker(input, &shared));
// Hang up the channel.
drop(shared.tx);
// Find lowest possible power.
rx.iter().min_by_key(|&(eap, _)| eap).map(|(_, score)| score).unwrap()
}
fn worker(input: &Input, shared: &Shared) {
while !shared.done.load(Ordering::Relaxed) {
// Get the next attack power, incrementing it atomically for the next fight.
let power = shared.elf_attack_power.fetch_add(1, Ordering::Relaxed);
// If the Elves win then set the score and signal all threads to stop.
// Use a channel to queue all potential scores as another thread may already have sent a
// different value.
if let Some(score) = fight(input, power, true) {
shared.done.store(true, Ordering::Relaxed);
let _unused = shared.tx.send((power, score));
}
}
}
/// Careful implementation of the game rules.
fn fight(input: &Input, elf_attack_power: i32, part_two: bool) -> Option<i32> {
let mut units = Vec::new();
let mut elves = input.elves.len();
let mut goblins = input.goblins.len();
let mut grid = Grid::new(32, 32, None);
// Initialize each unit.
for &position in &input.elves {
units.push(Unit { position, kind: Kind::Elf, health: 200, power: elf_attack_power });
}
for &position in &input.goblins {
units.push(Unit { position, kind: Kind::Goblin, health: 200, power: 3 });
}
for turn in 0.. {
// Remove dead units for efficiency.
units.retain(|u| u.health > 0);
// Units take turns in reading order.
units.sort_unstable_by_key(|u| 32 * u.position.y + u.position.x);
// Grid is used for reverse lookup from location to index.
units.iter().enumerate().for_each(|(i, u)| grid[u.position] = Some(i));
for index in 0..units.len() {
let Unit { position, kind, health, power } = units[index];
// Unit may have been killed during this turn.
if health <= 0 {
continue;
}
// Check if there are no more remaining targets then return *complete* turns.
// Determining a complete turn is subtle. If the last unit to act (in reading order)
// kills the last remaining enemy then that counts as a complete turn. Otherwise the
// turn is considered incomplete and doesn't count.
if elves == 0 || goblins == 0 {
return Some(turn * units.iter().map(|u| u.health.max(0)).sum::<i32>());
}
// Search for neighboring enemies.
let mut nearby = attack(&grid, &units, position, kind);
// If no enemy next to unit then move towards nearest enemy in reading order,
// breaking equal distance ties in reading order.
if nearby.is_none() {
if let Some(next) = double_bfs(input.walls, &units, position, kind) {
grid[position] = None;
grid[next] = Some(index);
units[index].position = next;
nearby = attack(&grid, &units, next, kind);
}
}
// Attack enemy if possible.
if let Some(target) = nearby {
units[target].health -= power;
if units[target].health <= 0 {
grid[units[target].position] = None;
// For part two, short circuit if a single elf is killed.
match units[target].kind {
Kind::Elf if part_two => return None,
Kind::Elf => elves -= 1,
Kind::Goblin => goblins -= 1,
}
}
}
}
}
unreachable!()
}
/// Search for weakest neighboring enemy. Equal health ties are broken in reading order.
fn attack(grid: &Grid<Option<usize>>, units: &[Unit], point: Point, kind: Kind) -> Option<usize> {
let mut enemy_health = i32::MAX;
let mut enemy_index = None;
for next in READING_ORDER.iter().filter_map(|&o| grid[point + o]) {
if units[next].kind != kind && units[next].health < enemy_health {
enemy_health = units[next].health;
enemy_index = Some(next);
}
}
enemy_index
}
/// Performs two BFS searches. The first search from the current unit finds the nearest target
/// in reading order. The second reverse search from the target to the current unit, finds the
/// correct direction to move.
fn double_bfs(mut walls: [u32; 32], units: &[Unit], point: Point, kind: Kind) -> Option<Point> {
let frontier = &mut [0; 32];
set_bit(frontier, point);
let walls = &mut walls;
let in_range = &mut [0; 32];
for unit in units.iter().filter(|u| u.health > 0) {
if unit.kind == kind {
// Units of the same type are obstacles.
set_bit(walls, unit.position);
} else {
// Add enemy units to the list of potential targets.
set_bit(in_range, unit.position);
}
}
// We're interested in the 4 orthogonal squares around each enemy unit.
expand(walls, in_range);
// Search for reachable squares. There could be no reachable squares, for example friendly
// units already have the enemy surrounded or are blocking the path.
while expand(walls, frontier) {
if let Some(target) = intersect(in_range, frontier) {
// Reverse search from target to determine correct movement direction.
let frontier = &mut [0; 32];
set_bit(frontier, target);
let in_range = &mut [0; 32];
set_bit(in_range, point);
expand(walls, in_range);
// This will always succeed as there was a path from the current unit.
loop {
expand(walls, frontier);
if let Some(target) = intersect(in_range, frontier) {
return Some(target);
}
}
}
}
None
}
/// Use bitwise logic to expand the frontier. Returns a boolean indicating if the frontier
/// actually expanded.
fn expand(walls: &[u32], frontier: &mut [u32]) -> bool {
let mut previous = frontier[0];
let mut changed = 0;
for i in 1..31 {
let current = frontier[i];
let next = frontier[i + 1];
frontier[i] = (previous | (current << 1) | current | (current >> 1) | next) & !walls[i];
previous = current;
changed |= current ^ frontier[i];
}
changed != 0
}
/// Check if we have reached a target, returning the first target in reading order.
fn intersect(in_range: &[u32], frontier: &[u32]) -> Option<Point> {
for i in 1..31 {
let both = in_range[i] & frontier[i];
if both != 0 {
let x = both.trailing_zeros() as i32;
let y = i as i32;
return Some(Point::new(x, y));
}
}
None
}
/// Convenience function to set a single bit from a point's location.
#[inline]
fn set_bit(slice: &mut [u32], point: Point) {
slice[point.y as usize] |= 1 << point.x;
}