aoc/year2018/day19.rs
1//! # Go With The Flow
2//!
3//! There are two parts to this problem:
4//! * Reverse engineering the assembly in order to figure out what the program is doing.
5//! * Implementing the program more efficiently in Rust.
6//!
7//! ## Reverse Engineering
8//!
9//! ```none
10//! Raw | Pseudo-Assembly | Pseudo-Rust
11//! -----------------+----------------------------------+-----------------------------------
12//! #ip 1 | # a = 0 b = 2 c = 3 d = 4 e = 5 |
13//! addi 1 16 1 | goto hotel |
14//! seti 1 8 2 | alfa: b = 1 | for b in 1..=e {
15//! seti 1 5 4 | bravo: d = 1 | for d in 1..=e {
16//! mulr 2 4 3 | charlie: c = b * d |
17//! eqrr 3 5 3 | c = (c == e) ? 1: 0 |
18//! addr 3 1 1 | if c == 1 goto delta | if b * d == e {
19//! addi 1 1 1 | goto echo |
20//! addr 2 0 0 | delta: a += b | a += b
21//! addi 4 1 4 | echo: d += 1 |
22//! gtrr 4 5 3 | c = (d > e) ? 1: 0 | }
23//! addr 1 3 1 | if c == 1 goto foxtrot |
24//! seti 2 8 1 | goto charlie | }
25//! addi 2 1 2 | foxtrot: b += 1 |
26//! gtrr 2 5 3 | c = (b > e) ? 1: 0 |
27//! addr 3 1 1 | if c == 1 goto golf |
28//! seti 1 8 1 | goto bravo | }
29//! mulr 1 1 1 | golf: goto end |
30//! addi 5 2 5 | hotel: e = 2 |
31//! mulr 5 5 5 | e = e * e |
32//! mulr 1 5 5 | e *= 19 |
33//! muli 5 11 5 | e *= 11 |
34//! addi 3 $FIRST 3 | c = $FIRST |
35//! mulr 3 1 3 | c *= 22 |
36//! addi 3 $SECOND 3 | c += $SECOND |
37//! addr 5 3 5 | e += c | e = (22 * $FIRST + $SECOND) + 836
38//! addr 1 0 1 | if a == 1 goto india |
39//! seti 0 7 1 | goto alfa |
40//! setr 1 1 3 | india: c = 27 |
41//! mulr 3 1 3 | c *= 28 |
42//! addr 1 3 3 | c += 29 |
43//! mulr 1 3 3 | c *= 30 |
44//! muli 3 14 3 | c *= 14 |
45//! mulr 3 1 3 | c *= 32 |
46//! addr 5 3 5 | e += c | if a == 1 { e += 10550400 }
47//! seti 0 9 0 | a = 0 |
48//! seti 0 0 1 | goto alfa |
49//! | end: |
50//! ```
51//!
52//! The decoded assembly shows that the program is computing the
53//! [sum of the divisors](https://en.wikipedia.org/wiki/Divisor_summatory_function) of a number `n`,
54//! using two nested loops for a total complexity in part two of `O(n²) = O(10¹⁴)`.
55//!
56//! Clearly there is some room for performance improvements. The interesting part is that we only
57//! need the two numbers `$FIRST` and `$SECOND` and can discard the rest of the input.
58//!
59//! ## Rust Implementation
60//!
61//! We compute the divisor sum using [trial division](https://en.wikipedia.org/wiki/Trial_division).
62//! As we want the prime factors (instead of checking that `n` is prime) the asymptotic complexity
63//! is slightly lower in practice, being the square root of the largest prime factor of `n`
64//! instead of the square root of `n` itself.
65//!
66//! As `n` is on the order of 10,000,000 this gives a worst case upper bound of `√10000000 = 3162`
67//! when `n` is prime. However for most composite numbers the largest prime factor will be much
68//! smaller, on the order of 100,000 for an approximate complexity of `√100000 = 316`.
69use crate::util::parse::*;
70
71type Input = (u32, u32);
72
73/// Extracts the two unique numbers from the input then calculates the composite numbers
74/// needed for both parts.
75pub fn parse(input: &str) -> Input {
76 let tokens: Vec<u32> = input.iter_unsigned().collect();
77 let base = 22 * tokens[65] + tokens[71];
78 (base + 836, base + 10551236)
79}
80
81pub fn part1(input: &Input) -> u32 {
82 divisor_sum(input.0)
83}
84
85pub fn part2(input: &Input) -> u32 {
86 divisor_sum(input.1)
87}
88
89/// Returns the sum of the divisors of an integer `n`, including 1 and `n` itself.
90/// For example `20 => 1 + 2 + 4 + 5 + 10 + 20 = 42`.
91fn divisor_sum(mut n: u32) -> u32 {
92 let mut f = 2;
93 let mut sum = 1;
94
95 // We only need to check factors less than or equal to the square root of the greatest prime
96 // factor of the input. This loop will only consider prime numbers since we will have sieved
97 // out smaller primes. For example `n = 20 = 2 * 2 * 5`. When we check `f = 4`, `n` will
98 // already be reduced to 5.
99 while f * f <= n {
100 // `g` is the next term in the geometric series
101 // representing the sum of a repeated prime factor.
102 let mut g = sum;
103
104 // `n` could have more than one of the same prime factor.
105 while n % f == 0 {
106 n /= f;
107 g *= f;
108 sum += g;
109 }
110
111 f += 1;
112 }
113
114 // If `n` is one then the greatest prime factor was repeated so has already been included in
115 // the sum and we can just return it directly. Otherwise `n` is the unique greatest prime
116 // factor and must be added to the sum.
117 if n == 1 { sum } else { sum * (1 + n) }
118}