1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
//! # Four-Dimensional Adventure
//!
//! This problem is the classic [union find](https://en.wikipedia.org/wiki/Disjoint-set_data_structure).
//! However since we only need the *count* of the distinct sets we can use a much simpler approach.
//!
//! Starting with an arbitrary point we find all other points within range, adding them to a
//! todo list. We then transitively determine the neighbors of those points, and so on until
//! all sets have been found.
use crate::util::iter::*;
use crate::util::parse::*;
#[derive(Clone, Copy)]
pub struct Point {
x: i32,
y: i32,
z: i32,
w: i32,
}
/// Simple 4D point implementation with Manhattan distance.
impl Point {
fn from([x, y, z, w]: [i32; 4]) -> Self {
Point { x, y, z, w }
}
fn mahattan(&self, other: Self) -> i32 {
(self.x - other.x).abs()
+ (self.y - other.y).abs()
+ (self.z - other.z).abs()
+ (self.w - other.w).abs()
}
}
pub fn parse(input: &str) -> Vec<Point> {
input.iter_signed::<i32>().chunk::<4>().map(Point::from).collect()
}
pub fn part1(input: &[Point]) -> usize {
let mut constellations = 0;
let mut remaining = input.to_vec();
let mut todo = Vec::with_capacity(input.len());
// Choose arbitrary point and start a new constellation.
while let Some(start) = remaining.pop() {
constellations += 1;
todo.push(start);
while let Some(point) = todo.pop() {
let mut i = 0;
// Find all neighbors, adding them to `todo` in order to transitively find all
// other points in the constellation.
while i < remaining.len() {
if point.mahattan(remaining[i]) <= 3 {
todo.push(remaining.swap_remove(i));
} else {
i += 1;
}
}
}
}
constellations
}
pub fn part2(_input: &[Point]) -> &'static str {
"n/a"
}