1//! # Crossed Wires
2//!
3//! The input follow some implicit rules that can be used to simplify our approach:
4//!
5//! * Wires cross only at right angles to each other, so we only need to consider horizontal lines
6//! when moving vertically and vice-versa.
7//! * There is only a single vertical line at a given x coordinates and vice-versa.
8//!
9//! This makes [`BTreeMap`] a great choice to store horizontal or vertical line segments as there
10//! are no collisions. The [`range`] method can lookup all line segments contained between two
11//! coordinates to check for intersections.
12//!
13//! First we build two maps, one vertical and one horizontal, of each line segment for the first
14//! wire. Then we trace the steps of the second wire, looking for any intersections. We calculate
15//! both part one and part two at the same time, by also including the distance so far
16//! from the starting point of each lines.
17//!
18//! [`range`]: BTreeMap::range
19use crate::util::parse::*;
20use crate::util::point::*;
21use std::collections::BTreeMap;
2223type Input = (i32, i32);
2425struct Line {
26 start: Point,
27 end: Point,
28 distance: i32,
29}
3031pub fn parse(input: &str) -> Input {
32// Map a line into an iterator of direction and distance pairs.
33let lines: Vec<_> = input.lines().collect();
34let steps = |i: usize| {
35let first = lines[i].bytes().filter(u8::is_ascii_alphabetic);
36let second = lines[i].iter_signed::<i32>();
37 first.zip(second)
38 };
3940// Build two maps, one for vertical segments and one for horizontal.
41let mut start = ORIGIN;
42let mut distance = 0;
43let mut vertical = BTreeMap::new();
44let mut horizontal = BTreeMap::new();
4546for (direction, amount) in steps(0) {
47let delta = Point::from(direction);
48let end = start + delta * amount;
49let line = Line { start, end, distance };
5051if start.x == end.x {
52 vertical.insert(start.x, line);
53 } else {
54 horizontal.insert(start.y, line);
55 }
5657 start = end;
58 distance += amount;
59 }
6061// Trace the steps of the second wire, checking for intersections.
62let mut start = ORIGIN;
63let mut distance = 0;
64let mut manhattan = i32::MAX;
65let mut delay = i32::MAX;
6667for (direction, amount) in steps(1) {
68let delta = Point::from(direction);
69let end = start + delta * amount;
7071// Use a block to scope the `update` lamdbas mutable borrow of `distance`.
72{
73// Checks for intersections, ignoring the initial intersection at the origin.
74let mut update = |line: &Line, candidate: Point| {
75if candidate.manhattan(line.start) < line.end.manhattan(line.start)
76 && candidate.signum(line.start) == line.end.signum(line.start)
77 && candidate.manhattan(ORIGIN) > 0
78{
79 manhattan = manhattan.min(candidate.manhattan(ORIGIN));
80 delay = delay.min(
81 distance
82 + candidate.manhattan(start)
83 + line.distance
84 + candidate.manhattan(line.start),
85 );
86 }
87 };
8889// BTreeMaps are sorted and can return all key/value pairs in a range.
90match direction {
91b'U' => {
92for (&y, line) in horizontal.range(end.y..=start.y) {
93 update(line, Point::new(start.x, y));
94 }
95 }
96b'D' => {
97for (&y, line) in horizontal.range(start.y..=end.y) {
98 update(line, Point::new(start.x, y));
99 }
100 }
101b'L' => {
102for (&x, line) in vertical.range(end.x..=start.x) {
103 update(line, Point::new(x, start.y));
104 }
105 }
106b'R' => {
107for (&x, line) in vertical.range(start.x..=end.x) {
108 update(line, Point::new(x, start.y));
109 }
110 }
111_ => unreachable!(),
112 }
113 }
114115 start = end;
116 distance += amount;
117 }
118119 (manhattan, delay)
120}
121122pub fn part1(input: &Input) -> i32 {
123 input.0
124}
125126pub fn part2(input: &Input) -> i32 {
127 input.1
128}