aoc/year2019/day06.rs
1//! # Universal Orbit Map
2//!
3//! Each object name is 3 characters long, using the characters `A` to `Z` and `0` to `9`.
4//! This is only 36 ^ 3 = 46656 possibilities, so we can use
5//! [perfect hashing](https://en.wikipedia.org/wiki/Perfect_hash_function) to store contiguous
6//! indices for each object, allowing us to lookup a perfect *minimal* hash for each object.
7//!
8//! This is twice as fast as using a [`FastMap`] to lookup the indices.
9//!
10//! [`FastMap`]: crate::util::hash
11
12/// Convert 3 character object names to contiguous indices for faster lookup.
13pub fn parse(input: &str) -> Vec<usize> {
14 // Convert 'A'.."Z" and '0'..'9' to a number between 0 and 36.
15 let digit = |b: u8| {
16 if b.is_ascii_digit() { (b - b'0') as usize } else { (10 + b - b'A') as usize }
17 };
18
19 // Hash each 3 character object name.
20 let perfect_hash = |object: &str| -> usize {
21 let bytes = object.as_bytes();
22 digit(bytes[0]) + 36 * digit(bytes[1]) + 1296 * digit(bytes[2])
23 };
24
25 // Pre-seed known indices for objects that we need to specifically lookup later.
26 let mut indices = [0_u16; 36 * 36 * 36];
27 indices[perfect_hash("COM")] = 1;
28 indices[perfect_hash("SAN")] = 2;
29 indices[perfect_hash("YOU")] = 3;
30 let mut current = 4;
31
32 // Assign sequential indices to each object the first time that we encounter it.
33 // 0 is used as a special "empty" value.
34 let mut lookup = |s: &str| {
35 let hash = perfect_hash(s);
36 if indices[hash] == 0 {
37 let previous = current;
38 indices[hash] = current;
39 current += 1;
40 previous as usize
41 } else {
42 indices[hash] as usize
43 }
44 };
45
46 // Build parent-child relationships for each object. Add one extra for the unused 0 special
47 // value and another as there is always one more object than input lines.
48 let lines: Vec<_> = input.lines().collect();
49 let mut parent = vec![0; lines.len() + 2];
50
51 for line in lines {
52 let left = lookup(&line[..3]);
53 let right = lookup(&line[4..]);
54 parent[right] = left;
55 }
56
57 parent
58}
59
60/// Recusively follow parent relationships all the way to the root COM object. Cache each object's
61/// depth in order to avoid unecessary work.
62pub fn part1(input: &[usize]) -> usize {
63 fn orbits(parent: &[usize], cache: &mut [Option<usize>], index: usize) -> usize {
64 if let Some(result) = cache[index] {
65 result
66 } else {
67 let result = 1 + orbits(parent, cache, parent[index]);
68 cache[index] = Some(result);
69 result
70 }
71 }
72
73 let cache = &mut vec![None; input.len()];
74 cache[0] = Some(0);
75 cache[1] = Some(0);
76 (0..input.len()).map(|index| orbits(input, cache, index)).sum()
77}
78
79/// Trace Santa's path all the way to the root COM object keeping track of distance. Then
80/// trace our path to the root. As soon as we encounter a non-zero distance then we've hit
81/// the first common ancestor and can calculate the required transfers.
82pub fn part2(input: &[usize]) -> u16 {
83 let mut distance = vec![0_u16; input.len()];
84 let mut index = 2; // SAN
85 let mut count = 0;
86
87 // COM = 1
88 while index != 1 {
89 distance[index] = count;
90 index = input[index];
91 count += 1;
92 }
93
94 index = 3; // YOU
95 count = 0;
96
97 while distance[index] == 0 {
98 index = input[index];
99 count += 1;
100 }
101
102 distance[index] + count - 2
103}