1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
//! # Oxygen System
//!
//! [Breadth first search](https://en.wikipedia.org/wiki/Breadth-first_search) is the simplest
//! path finding algorithm and is suitable when the cost of moving between locations is identical.
//! [This excellent blog](https://www.redblobgames.com/pathfinding/a-star/introduction.html)
//! has more detail on the various path finding algorithms that come in handy during Advent of Code.
//!
//! The tricky part is determining the shape of the maze. If we assume the maze consists only of
//! corridors of width one and has no loops or rooms, then we can use the simple
//! [wall follower](https://en.wikipedia.org/wiki/Maze-solving_algorithm#Wall_follower)
//! algorithm to eventually trace our way through the entire maze back to the starting point.
use super::intcode::*;
use crate::util::hash::*;
use crate::util::parse::*;
use crate::util::point::*;
use std::collections::VecDeque;
type Input = (FastSet<Point>, Point);
/// Build the shape of the maze using the right-hand version of the wall following algorithm.
pub fn parse(input: &str) -> Input {
let code: Vec<_> = input.iter_signed().collect();
let mut computer = Computer::new(&code);
let mut first = true;
let mut direction = UP;
let mut position = ORIGIN;
let mut oxygen_system = ORIGIN;
let mut visited = FastSet::new();
loop {
direction = if first { direction.clockwise() } else { direction.counter_clockwise() };
match direction {
UP => computer.input(1),
DOWN => computer.input(2),
LEFT => computer.input(3),
RIGHT => computer.input(4),
_ => unreachable!(),
}
match computer.run() {
State::Output(0) => first = false,
State::Output(result) => {
first = true;
position += direction;
visited.insert(position);
if result == 2 {
oxygen_system = position;
}
if position == ORIGIN {
break;
}
}
_ => unreachable!(),
}
}
(visited, oxygen_system)
}
/// BFS from the starting point until we find the oxygen system.
pub fn part1(input: &Input) -> i32 {
let (mut maze, oxygen_system) = input.clone();
let mut todo = VecDeque::from([(ORIGIN, 0)]);
while let Some((point, cost)) = todo.pop_front() {
maze.remove(&point);
if point == oxygen_system {
return cost;
}
for movement in ORTHOGONAL {
let next_point = point + movement;
if maze.contains(&next_point) {
todo.push_back((next_point, cost + 1));
}
}
}
unreachable!()
}
/// BFS from the oxygen system to all points in the maze.
pub fn part2(input: &Input) -> i32 {
let (mut maze, oxygen_system) = input.clone();
let mut todo = VecDeque::from([(oxygen_system, 0)]);
let mut minutes = 0;
while let Some((point, cost)) = todo.pop_front() {
maze.remove(&point);
minutes = minutes.max(cost);
for movement in ORTHOGONAL {
let next_point = point + movement;
if maze.contains(&next_point) {
todo.push_back((next_point, cost + 1));
}
}
}
minutes
}