1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
//! # Set and Forget
//!
//! The key insight is that this is not a path finding problem but a *compression*
//! problem. We need to reduce the robot's path into repetitions of three patterns.
//! This is essentially a very simple version of the well known
//! [LZW](https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch)
//! algorithm used by the `GIF` and `ZIP` file formats.
//!
//! First we find the complete path with a simple heuristic:
//! * Rotate left or right to face the current path segment (a horizontal or vertical line).
//! * Go forwards until we hit the end of the current path segment.
//! * If it's a dead end then finish.
//!
//! Then we look for three patterns that can be repeated in any order to form the whole path.
//! Without loss of any generality the first pattern anchored at the start is always `A`,
//! the next `B` and the last `C`.
use super::intcode::*;
use crate::util::hash::*;
use crate::util::parse::*;
use crate::util::point::*;
use std::fmt::Write;
use std::ops::ControlFlow;

pub struct Input {
    code: Vec<i64>,
    scaffold: FastSet<Point>,
    position: Point,
    direction: Point,
}

struct Movement<'a> {
    routine: String,
    functions: [Option<&'a str>; 3],
}

/// The camera output points from left to right, top to bottom.
pub fn parse(input: &str) -> Input {
    let code: Vec<_> = input.iter_signed().collect();
    let mut computer = Computer::new(&code);

    let mut x = 0;
    let mut y = 0;
    let mut scaffold = FastSet::new();
    let mut position = ORIGIN;
    let mut direction = ORIGIN;

    while let State::Output(next) = computer.run() {
        match next {
            // '\n'
            10 => {
                y += 1;
            }
            // '#'
            35 => {
                scaffold.insert(Point::new(x, y));
            }
            // '<'
            60 => {
                position = Point::new(x, y);
                direction = LEFT;
            }
            // '>'
            62 => {
                position = Point::new(x, y);
                direction = RIGHT;
            }
            // '^'
            94 => {
                position = Point::new(x, y);
                direction = UP;
            }
            // 'v'
            118 => {
                position = Point::new(x, y);
                direction = DOWN;
            }
            // '.'
            _ => (),
        }
        x = if next == 10 { 0 } else { x + 1 };
    }

    Input { code, scaffold, position, direction }
}

pub fn part1(input: &Input) -> i32 {
    let Input { scaffold, .. } = input;
    let mut result = 0;

    for &point in scaffold {
        if ORTHOGONAL.iter().all(|&delta| scaffold.contains(&(point + delta))) {
            result += point.x * point.y;
        }
    }

    result
}

pub fn part2(input: &Input) -> i64 {
    let path = build_path(input);
    let mut movement = Movement { routine: String::new(), functions: [None; 3] };

    compress(&path, &mut movement);

    // Convert trailing comma ',' into a trailing newline '\n'
    let mut rules = String::new();
    let mut newline_ending = |s: &str| {
        rules.push_str(s);
        rules.pop();
        rules.push('\n');
    };

    newline_ending(&movement.routine);
    movement.functions.into_iter().flatten().for_each(newline_ending);

    let mut modified = input.code.clone();
    modified[0] = 2;

    let mut computer = Computer::new(&modified);
    computer.input_ascii(&rules);

    visit(computer)
}

/// Use a simple heuristic to build a path that visits every part of the scaffold at least once.
/// This string will be too long to use directly in the robot's movement functions, so we'll
/// need to compress it first.
fn build_path(input: &Input) -> String {
    let Input { scaffold, mut position, mut direction, .. } = input;
    let mut path = String::new();

    loop {
        let left = direction.counter_clockwise();
        let right = direction.clockwise();

        if scaffold.contains(&(position + left)) {
            direction = left;
        } else if scaffold.contains(&(position + right)) {
            direction = right;
        } else {
            break path;
        }

        let mut next = position + direction;
        let mut magnitude = 0;

        while scaffold.contains(&next) {
            position = next;
            next += direction;
            magnitude += 1;
        }

        let direction = if direction == left { 'L' } else { 'R' };
        let _ = write!(path, "{direction},{magnitude},");
    }
}

/// Find three patterns that can be repeated in any order to build the whole path.
///
/// Uses a greedy backtracking algorithm that attempts to match as much of the remaining string
/// as possible with known patterns, before trying combinations of a new pattern (up to the maximum
/// movement function length of 20 characters).
fn compress<'a>(path: &'a str, movement: &mut Movement<'a>) -> ControlFlow<()> {
    // Nothing left to match, we've finished successfully.
    if path.is_empty() {
        return ControlFlow::Break(());
    }
    // Safety check just in case very short sequences can match the entire input.
    if movement.routine.len() > 21 {
        return ControlFlow::Continue(());
    }

    for (i, &name) in ['A', 'B', 'C'].iter().enumerate() {
        movement.routine.push(name);
        movement.routine.push(',');

        if let Some(needle) = movement.functions[i] {
            // Try known patterns first
            if let Some(remaining) = path.strip_prefix(needle) {
                compress(remaining, movement)?;
            }
        } else {
            // Then combinations up to length 20 characters
            for (needle, remaining) in segments(path) {
                movement.functions[i] = Some(needle);
                compress(remaining, movement)?;
                movement.functions[i] = None;
            }
        }

        movement.routine.pop();
        movement.routine.pop();
    }

    ControlFlow::Continue(())
}

/// Fun with iterators.
fn segments(path: &str) -> impl Iterator<Item = (&str, &str)> {
    path.bytes()
        .enumerate()
        // Index of every comma ',' in the string
        .filter_map(|(i, b)| (b == b',').then_some(i))
        // Maximum length for movement function is 20 characters
        .take_while(|&i| i < 21)
        // Include trailing comma in "needle" to make matching easier
        .map(|i| path.split_at(i + 1))
        // Movement is always pairs of (rotation, magnitude) so return every second comma
        .skip(1)
        .step_by(2)
}

#[cfg(not(feature = "frivolity"))]
fn visit(mut computer: Computer) -> i64 {
    // Disable continous video feed
    computer.input_ascii("n\n");

    let mut result = 0;
    while let State::Output(next) = computer.run() {
        result = next;
    }
    result
}

/// Non essential but fun. Animates the robot traversing the scaffold.
#[cfg(feature = "frivolity")]
fn visit(mut computer: Computer) -> i64 {
    use crate::util::ansi::*;
    use std::thread::sleep;
    use std::time::Duration;

    let mut result = 0;
    let mut previous = ' ';
    let mut buffer = String::new();

    // Enable continous video feed
    computer.input_ascii("y\n");

    while let State::Output(next) = computer.run() {
        result = next;
        let ascii = (next as u8) as char;

        // Highlight the robot's position
        match ascii {
            '^' | 'v' | '<' | '>' => {
                let _ = write!(&mut buffer, "{BOLD}{YELLOW}{ascii}{RESET}");
            }
            _ => buffer.push(ascii),
        }

        // Each frame is separated by a blank line
        if ascii == '\n' && previous == '\n' {
            print!("{HOME}{CLEAR}{buffer}");
            sleep(Duration::from_millis(25));
            buffer.clear();
        }

        previous = ascii;
    }

    result
}