1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
//! # Binary Boarding
//!
//! The entire part one description is an obfuscated way to describe that each seat id is a 10 bit
//! binary number, where `B` and `R` mean a 1 bit in that position and `F` and `L` mean a 0 bit.
//!
//! To solve part two we can have a little fun. Since we know that only a single seat is missing
//! if we [XOR](https://en.wikipedia.org/wiki/XOR_gate) together all the seat ids from
//! `min` to `max` then XOR with the actual seat ids, the result will be our missing seat id.
pub struct Input {
min: u32,
max: u32,
xor: u32,
}
pub fn parse(input: &str) -> Input {
let mut min = u32::MAX;
let mut max = u32::MIN;
let mut xor = 0;
for line in input.lines() {
let id = line.bytes().fold(0, |acc, b| (acc << 1) | (b == b'B' || b == b'R') as u32);
min = min.min(id);
max = max.max(id);
xor ^= id;
}
Input { min, max, xor }
}
pub fn part1(input: &Input) -> u32 {
input.max
}
pub fn part2(input: &Input) -> u32 {
let rows = (input.min..=input.max).fold(0, |acc, b| acc ^ b);
rows ^ input.xor
}