1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
//! # Combo Breaker
//!
//! The card loop size is found using the
//! [Baby-step giant-step algorithm](https://en.wikipedia.org/wiki/Baby-step_giant-step).
//! This takes only √20201227 = 4495 steps, compared to potentially up to 20201227 steps
//! for the brute force approach.
//!
//! The common encryption key is then calculated efficiently by
//! [modular exponentiation](https://en.wikipedia.org/wiki/Modular_exponentiation) using
//! [exponentiation by squaring](https://en.wikipedia.org/wiki/Exponentiation_by_squaring).
use crate::util::hash::*;
use crate::util::iter::*;
use crate::util::math::*;
use crate::util::parse::*;
pub fn parse(input: &str) -> [u64; 2] {
input.iter_unsigned().chunk::<2>().next().unwrap()
}
pub fn part1(input: &[u64; 2]) -> u64 {
let [card_public_key, door_public_key] = *input;
let card_loop_count = discrete_logarithm(card_public_key);
door_public_key.mod_pow(card_loop_count, 20201227)
}
pub fn part2(_input: &[u64; 2]) -> &'static str {
"n/a"
}
/// Baby-step giant-step algorithm to compute discrete logarithm.
/// Constants are hardcoded to this specific problem.
/// * 4495 is the ceiling of √20201227
/// * 680915 is 7⁻⁴⁴⁹⁵, or the
/// [multiplicative modular inverse](https://en.wikipedia.org/wiki/Modular_multiplicative_inverse)
/// of 7 to modular exponent 4495.
fn discrete_logarithm(public_key: u64) -> u64 {
let m = 4495;
let mut map = FastMap::with_capacity(m as usize);
let mut a = 1;
for j in 0..m {
map.insert(a, j);
a = (a * 7) % 20201227;
}
let mut b = public_key;
for i in 0..m {
if let Some(j) = map.get(&b) {
return i * m + j;
}
b = (b * 680915) % 20201227;
}
unreachable!()
}