1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
//! # Chiton
//!
//! Traversing a graph with different non-negative edge weights is a job for the classic
//! [Djisktra's algorithm](https://www.redblobgames.com/pathfinding/a-star/introduction.html),
//! explained really well in the linked blog post.
//!
//! To speed things up we use a trick. Classic Djisktra uses a generic priority queue that
//! can be implemented in Rust using a [`BinaryHeap`]. However the total cost follows a strictly
//! increasing order in a constrained range of values, so we can use a much faster single purpose
//! data structure instead.
//!
//! The maximum possible increase in risk in 9, so we create an array of 10 `vec`s. The current
//! list of items to process is at `risk % 10` and each new item is added at `risk % 10 + new_cost`.
//! Once we have processed the current risk level we clear the vec to avoid having to reallocate
//! memory.
//!
//! [`BinaryHeap`]: std::collections::BinaryHeap
use crate::util::parse::*;
use std::array::from_fn;
pub struct Square {
size: usize,
bytes: Vec<u8>,
}
pub fn parse(input: &str) -> Square {
let raw: Vec<_> = input.lines().map(str::as_bytes).collect();
let size = raw.len();
let mut bytes = Vec::with_capacity(size * size);
raw.iter().for_each(|slice| bytes.extend_from_slice(slice));
bytes.iter_mut().for_each(|b| *b = b.to_decimal());
Square { size, bytes }
}
/// Search the regular size grid.
pub fn part1(input: &Square) -> usize {
dijkstra(input)
}
/// Create an expanded grid then search.
pub fn part2(input: &Square) -> usize {
let Square { size, bytes } = input;
let mut expanded = Square { size: 5 * size, bytes: vec![0; 25 * size * size] };
for (i, b) in bytes.iter().enumerate() {
let x1 = i % size;
let y1 = i / size;
let base = *b as usize;
for x2 in 0..5 {
for y2 in 0..5 {
let index = (5 * size) * (y2 * size + y1) + (x2 * size + x1);
expanded.bytes[index] = (1 + (base - 1 + x2 + y2) % 9) as u8;
}
}
}
dijkstra(&expanded)
}
/// Implementation of [Dijkstra's algorithm](https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm)
/// without using the decrease-key functionality.
fn dijkstra(square: &Square) -> usize {
let Square { size, bytes } = square;
let edge = size - 1;
let end = size * size - 1;
// Initialise our specialized priority queue with 10 vecs.
let mut todo: [Vec<u32>; 10] = from_fn(|_| Vec::with_capacity(1_000));
let mut cost = vec![u16::MAX; size * size];
let mut risk = 0;
// Start location and risk are both zero.
todo[0].push(0);
cost[0] = 0;
loop {
let i = risk % 10;
for j in 0..todo[i].len() {
let current = todo[i][j] as usize;
if current == end {
return risk;
}
let mut check = |next: usize| {
let next_cost = risk as u16 + bytes[next] as u16;
if next_cost < cost[next] {
todo[(next_cost % 10) as usize].push(next as u32);
cost[next] = next_cost;
}
};
let x = current % size;
let y = current / size;
if x > 0 {
check(current - 1);
}
if x < edge {
check(current + 1);
}
if y > 0 {
check(current - size);
}
if y < edge {
check(current + size);
}
}
todo[i].clear();
risk += 1;
}
}