aoc/year2021/day23.rs
1//! # Amphipod
2//!
3//! Our high level approach is an [A*](https://en.wikipedia.org/wiki/A*_search_algorithm) search
4//! over all possible burrow states. Three techniques are used to speed things up.
5//!
6//! Firstly a good choice of heuristic is crucial. The heuristic used has the following
7//! characteristics:
8//! * Exactly correct for optimal moves.
9//! * Cheap to update on each subsequent move.
10//!
11//! Secondly pruning states to reduce the search space is very beneficial. Two approaches are used:
12//! * A cache of previously seen states. If amphipods are in the same position but with a higher
13//! cost then the current state will never be optimal and can be pruned.
14//! * Detecting deadlocked states where an amphipod in the hallway prevents any possible solution.
15//! Exploring any further is a waste of time.
16//!
17//! Thirdly low level bit manipulation is used to represent the burrow state size compactly
18//! in only 16 bytes for faster copying and hashing.
19use crate::util::hash::*;
20use crate::util::heap::*;
21use std::array::from_fn;
22use std::hash::*;
23
24/// The values of `A`, `B`, `C` and `D` are used heavily to calculate room indices.
25const A: usize = 0;
26const B: usize = 1;
27const C: usize = 2;
28const D: usize = 3;
29const ROOM: usize = 4;
30const EMPTY: usize = 5;
31const COST: [usize; 4] = [1, 10, 100, 1000];
32
33/// Pack the room state into only 2 bytes.
34///
35/// We use 3 bits for each amphipod plus a marker bit for a maximum of 13 bits. The room is a
36/// stack with the amphipod closest to the hallway in the least significant position.
37///
38/// The marker bit is used to determine how full a room is and to disambiguate empty from the `A`
39/// type.
40///
41/// Some example rooms:
42/// * Empty room `0000000000000001`
43/// * Room with two `A`s `0000000001000000`
44/// * Room with `ABCD` where `A` is closest to hallway `0001011010001000`
45#[derive(Copy, Clone, PartialEq, Eq, Hash)]
46struct Room {
47 packed: u16,
48}
49
50impl Room {
51 /// Pack state into a compact `u16` representation.
52 fn new(spaces: [usize; 4]) -> Room {
53 let packed = (1 << 12) | (spaces[0] << 9) | (spaces[1] << 6) | (spaces[2] << 3) | spaces[3];
54 Room { packed: packed as u16 }
55 }
56
57 /// The marker bit is always in the most significant position, so can be used to find out the
58 /// size of a room.
59 fn size(self) -> usize {
60 ((15 - self.packed.leading_zeros()) / 3) as usize
61 }
62
63 /// Find the type of an amphipod closest to the hallway.
64 fn peek(self) -> Option<usize> {
65 (self.packed > 1).then_some((self.packed & 0b111) as usize)
66 }
67
68 /// Remove the top amphipod.
69 fn pop(&mut self) -> usize {
70 let pod = (self.packed & 0b111) as usize;
71 self.packed >>= 3;
72 pod
73 }
74
75 /// A room is "open" if amphipods of that type can move to it. This means that it must be
76 /// empty or only already contain amphipods of that type.
77 ///
78 /// We use a multiplication by a constant to figure out the bit pattern. For example a room
79 /// with three `B`s would have a bit pattern of `0000001001001001` which is the marker bit
80 /// plus B << 6 + B << 3 + B << 0 = B * 64 + B * 8 + B = B * 73.
81 fn open(self, kind: usize) -> bool {
82 self.packed == 1
83 || self.packed == (1 << 3) + (kind as u16) // 1
84 || self.packed == (1 << 6) + (kind as u16 * 9) // 8 + 1
85 || self.packed == (1 << 9) + (kind as u16 * 73) // 64 + 8 + 1
86 || self.packed == (1 << 12) + (kind as u16 * 585) // 512 + 64 + 8 + 1
87 }
88
89 /// Return an amphipod to the correct room.
90 fn push(&mut self, kind: usize) {
91 self.packed = (self.packed << 3) | (kind as u16);
92 }
93
94 /// Returns the amphipod at a specific index from the *bottom* of the burrow.
95 /// 0 is the bottom amphipod furthest from the hallway, 1 the next closest and so on.
96 fn spaces(self, index: usize) -> usize {
97 let adjusted = 3 * (self.size() - 1 - index);
98 ((self.packed >> adjusted) & 0b111) as usize
99 }
100}
101
102/// Pack the state of the hallway into a `usize`. Each hallway position is represented by a nibble
103/// with the pod type (plus additionally empty or room entrance markers) for a total of 44 bits.
104#[derive(Copy, Clone, PartialEq, Eq, Hash)]
105struct Hallway {
106 packed: usize,
107}
108
109impl Hallway {
110 /// The initial hallway is empty. Room entrances are marked as type 4.
111 fn new() -> Hallway {
112 Hallway { packed: 0x55454545455 }
113 }
114
115 /// Find the amphipod at a specific location.
116 fn get(self, index: usize) -> usize {
117 (self.packed >> (index * 4)) & 0xf
118 }
119
120 /// Updated the amphipod at a specific location.
121 fn set(&mut self, index: usize, value: usize) {
122 let mask = !(0xf << (index * 4));
123 let value = value << (index * 4);
124 self.packed = (self.packed & mask) | value;
125 }
126}
127
128/// Combine hallway and four rooms into a complete burrow representation in only
129/// 8 + 4 * 2 = 16 bytes.
130#[derive(Copy, Clone, PartialEq, Eq, Hash)]
131struct Burrow {
132 hallway: Hallway,
133 rooms: [Room; 4],
134}
135
136impl Burrow {
137 fn new(rooms: [[usize; 4]; 4]) -> Burrow {
138 Burrow { hallway: Hallway::new(), rooms: from_fn(|i| Room::new(rooms[i])) }
139 }
140}
141
142/// Subtracts the ASCII value of `A` from each character of the input so that amphipod values
143/// match the constants defined above.
144pub fn parse(input: &str) -> Vec<Vec<usize>> {
145 input
146 .lines()
147 .map(|line| line.bytes().map(|b| b.saturating_sub(b'A') as usize).collect())
148 .collect()
149}
150
151/// Part one is a special case of the full burrow where two amphipods of each type are already
152/// in the correct position in each room.
153pub fn part1(input: &[Vec<usize>]) -> usize {
154 let burrow = Burrow::new([
155 [A, A, input[3][3], input[2][3]],
156 [B, B, input[3][5], input[2][5]],
157 [C, C, input[3][7], input[2][7]],
158 [D, D, input[3][9], input[2][9]],
159 ]);
160 organize(burrow)
161}
162
163/// Part two adds the middle amphipods as specified in the problem statement.
164pub fn part2(input: &[Vec<usize>]) -> usize {
165 let burrow = Burrow::new([
166 [input[3][3], D, D, input[2][3]],
167 [input[3][5], B, C, input[2][5]],
168 [input[3][7], A, B, input[2][7]],
169 [input[3][9], C, A, input[2][9]],
170 ]);
171 organize(burrow)
172}
173
174/// A* search over all possible burrow states until we find the lowest cost to organize.
175///
176/// Each state is processed in one of two phases, "condense" or "expand".
177///
178/// In condense, ampihpods move from the hallway or another burrow directly to their home burrow.
179/// Multiple moves are combined if possible and each burrow is tried from left to right.
180/// In terms of energy this is always an optimal move.
181///
182/// If no moves to home burrows are possible then the expand phase moves amphipods into the
183/// hallway.
184fn organize(burrow: Burrow) -> usize {
185 let mut todo = MinHeap::with_capacity(20_000);
186 let mut seen = FastMap::with_capacity(20_000);
187
188 // Initial calculation of the heuristic is expensive but future updates will be cheap.
189 todo.push(best_possible(&burrow), burrow);
190
191 while let Some((energy, mut burrow)) = todo.pop() {
192 let open: [bool; 4] = from_fn(|i| burrow.rooms[i].open(i));
193
194 // Process each burrow that is open in left to right order. More than one amphipod may move.
195 let mut changed = false;
196 for (i, &open) in open.iter().enumerate() {
197 if open && burrow.rooms[i].size() < 4 {
198 let offset = 2 + 2 * i;
199 let forward = (offset + 1)..11;
200 let reverse = (0..offset).rev();
201 changed |= condense(&mut burrow, i, forward);
202 changed |= condense(&mut burrow, i, reverse);
203 }
204 }
205
206 if changed {
207 // If amphipods moved back to their home burrow in the condense phase then
208 // check if we're fully organized.
209 if burrow.rooms.iter().enumerate().all(|(i, r)| open[i] && r.size() == 4) {
210 return energy;
211 }
212
213 // Moving back to home burrow does not change total energy due to the way the
214 // heuristic is calculated. For example if we have spent 100 energy and the heuristic
215 // is 100, spending 10 to move an amphipod would result in 110 energy spent and a
216 // heuristic of 90.
217 let min = seen.get(&burrow).unwrap_or(&usize::MAX);
218 if energy < *min {
219 todo.push(energy, burrow);
220 seen.insert(burrow, energy);
221 }
222 } else {
223 // If no amphipods can return to their home burrow then fan out into multiple states
224 // by moving the top amphipod from each burrow into the hallway.
225 for (i, &open) in open.iter().enumerate() {
226 if !open {
227 let offset = 2 + 2 * i;
228 let forward = (offset + 1)..11;
229 let reverse = (0..offset).rev();
230 expand(&mut todo, &mut seen, burrow, energy, i, forward);
231 expand(&mut todo, &mut seen, burrow, energy, i, reverse);
232 }
233 }
234 }
235 }
236
237 unreachable!()
238}
239
240/// Heuristic of the lowest possible energy to organize the burrow. Assumes that amphipods can
241/// move through the hallway unblocked.
242fn best_possible(burrow: &Burrow) -> usize {
243 let mut energy = 0;
244 // How many of each kind are outside their home burrow. Used to adjust the energy needed
245 // to move. The first amphipod will need to move all the way to the bottom, but the next
246 // will only need to move 1 space less.
247 let mut need_to_move = [0; 4];
248
249 for (original_kind, room) in burrow.rooms.iter().enumerate() {
250 let mut blocker = false;
251
252 // Search from bottom to top
253 for depth in 0..room.size() {
254 let kind = room.spaces(depth);
255 if kind != original_kind {
256 // Any amphipod above us will need to move out of the way.
257 blocker = true;
258 need_to_move[kind] += 1;
259 // Calculate the energy to return directly to our home burrow
260 // taking into account how many other amphipods of our kind also need to move.
261 let up = 4 - depth;
262 let across = 2 * kind.abs_diff(original_kind); // Distance between rooms.
263 let down = need_to_move[kind];
264 energy += COST[kind] * (up + across + down);
265 } else if blocker {
266 // Even though we're in our home burrow we need to move out of the way of a lower
267 // amphipod of a different kind.
268 need_to_move[kind] += 1;
269 // Calculate the energy assuming we can move to one of the nearest hallway
270 // spaces on either side.
271 let up = 4 - depth;
272 let across = 2; // Nearest spot then back
273 let down = need_to_move[kind];
274 energy += COST[kind] * (up + across + down);
275 }
276 }
277 }
278
279 energy
280}
281
282/// Starting from a burrow of a specific kind, searches the hallway and other rooms from either
283/// left or right direction, returning all amphipods of that kind to the burrow.
284/// Stops searching immediately if blocked.
285fn condense(burrow: &mut Burrow, kind: usize, iter: impl Iterator<Item = usize>) -> bool {
286 let mut changed = false;
287
288 for hallway_index in iter {
289 match burrow.hallway.get(hallway_index) {
290 // Skip over empty spaces.
291 EMPTY => (),
292 // Move as many amphipods as possible from the room to their home burrow.
293 ROOM => {
294 let room_index = (hallway_index - 2) / 2;
295
296 while burrow.rooms[room_index].peek() == Some(kind) {
297 burrow.rooms[room_index].pop();
298 burrow.rooms[kind].push(kind);
299 changed = true;
300 }
301 }
302 // Move from hallway to home burrow.
303 pod if pod == kind => {
304 burrow.hallway.set(hallway_index, EMPTY);
305 burrow.rooms[kind].push(kind);
306 changed = true;
307 }
308 // We're blocked from any further progress in this direction.
309 _ => break,
310 }
311 }
312
313 changed
314}
315
316/// Searches the hallway in either the right or left direction, pushing a new state to the
317/// priority queue if it's possible to place an amphipod there.
318fn expand(
319 todo: &mut MinHeap<usize, Burrow>,
320 seen: &mut FastMap<Burrow, usize>,
321 mut burrow: Burrow,
322 energy: usize,
323 room_index: usize,
324 iter: impl Iterator<Item = usize>,
325) {
326 let kind = burrow.rooms[room_index].pop();
327
328 for hallway_index in iter {
329 match burrow.hallway.get(hallway_index) {
330 // Amphipods can't stop directly outside rooms.
331 ROOM => (),
332 // Check each empty space
333 EMPTY => {
334 let mut next = burrow;
335 next.hallway.set(hallway_index, kind);
336
337 // If this move would result in a state that can never be finished then prune early.
338 if deadlock_left(&next)
339 || deadlock_right(&next)
340 || deadlock_room(&next, 0)
341 || deadlock_room(&next, 1)
342 || deadlock_room(&next, 2)
343 || deadlock_room(&next, 3)
344 {
345 continue;
346 }
347
348 // If the destination is outside of the direct path from our current burrow
349 // to our home burrow then add the extra energy to move there *and back* to the
350 // heuristic.
351 let start = 2 + 2 * room_index;
352 let end = 2 + 2 * kind;
353
354 let adjust = if start == end {
355 // If in our home burrow but moving out of the way of another kind,
356 // then assume the minimum possible distance of 1 place to either the
357 // left or right in the hallway.
358 let across = hallway_index.abs_diff(start);
359 across - 1
360 } else {
361 let lower = start.min(end);
362 let upper = start.max(end);
363 // One of these expressions will be zero depending on direction.
364 lower.saturating_sub(hallway_index) + hallway_index.saturating_sub(upper)
365 };
366
367 let extra = COST[kind] * 2 * adjust;
368
369 // Critical optimization. If we're not in our home burrow then we must move out of
370 // the way otherwise we'd become a blocker.
371 if kind != room_index && extra == 0 {
372 continue;
373 }
374
375 // Check that we haven't already seen this state before with lower energy
376 // in order to prune suboptimal duplicates.
377 let next_energy = energy + extra;
378 let min = seen.get(&next).unwrap_or(&usize::MAX);
379
380 if next_energy < *min {
381 todo.push(next_energy, next);
382 seen.insert(next, next_energy);
383 }
384 }
385 // We're blocked from any further progress in this direction.
386 _ => break,
387 }
388 }
389}
390
391/// Checks for a situation where an `A` amphipod can block other amphipods in the leftmost burrow.
392///
393/// For example:
394/// ```none
395/// #############
396/// #...A.......#
397/// ### #.#.#.###
398/// #A#.#.#.#
399/// #A#.#.#.#
400/// #B#.#.#.#
401/// #########
402/// ```
403///
404/// The top two `A`s can move into the left hallways spaces but the `B` will then be stuck
405/// and we'll never be able to organize the burrow completely.
406fn deadlock_left(burrow: &Burrow) -> bool {
407 let room = &burrow.rooms[0];
408 let size = room.size();
409 burrow.hallway.get(3) == A && size >= 3 && room.spaces(size - 3) != A
410}
411
412/// Mirror image situation to `deadlock_left` where a `D` amphipod could block others.
413///
414/// For example:
415/// ```none
416/// #############
417/// #.......D...#
418/// ###.#.#.#A###
419/// #.#.#.#B#
420/// #.#.#.#C#
421/// #.#.#.#D#
422/// #########
423/// ```
424///
425/// The hallway has room for the top two amphipods but the `D` prevents the bottom two
426/// from returning to their home burrow.
427fn deadlock_right(burrow: &Burrow) -> bool {
428 let room = &burrow.rooms[3];
429 let size = room.size();
430 burrow.hallway.get(7) == D && size >= 3 && room.spaces(size - 3) != D
431}
432
433/// Detects situation where amphipods in the hallway need to move past each other but
434/// mutually block any further progress.
435///
436/// For example:
437/// ```none
438/// #############
439/// #.....D.A...#
440/// ###.#.#.#.###
441/// #.#.#.#.#
442/// #.#.#C#.#
443/// #.#.#C#.#
444/// #########
445/// ```
446///
447/// In this situation, neither `A` nor `D` can move into `C`'s room but also block each other
448/// from returning to their home burrow.
449///
450/// Another example:
451/// ```none
452/// #############
453/// #.....C.A...#
454/// ###.#.#.#.###
455/// #.#.#.#.#
456/// #.#.#B#.#
457/// #.#.#C#.#
458/// #########
459/// ```
460/// In this situation `C` blocks `A` from returning to its home burrow and `B` is also blocked
461/// from moving out of the way.
462fn deadlock_room(burrow: &Burrow, kind: usize) -> bool {
463 let left_kind = burrow.hallway.get(1 + 2 * kind);
464 let right_kind = burrow.hallway.get(3 + 2 * kind);
465
466 left_kind != EMPTY
467 && right_kind != EMPTY
468 && left_kind >= kind
469 && right_kind <= kind
470 && !(burrow.rooms[kind].open(kind) && (kind == right_kind || kind == left_kind))
471}