1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
//! # Arithmetic Logic Unit
//!
//! There are two ways to solve this problem. We can brute force emulate the ALU, but even with
//! memoization this takes a long time to solve. Instead analyzing and reverse engineering the code
//! shows an insight that reduces the problem to a much simpler constraint satisfaction problem.
//!
//! ## Analysis Summary
//!
//! The code consists of 14 blocks of 18 instructions, each block starting with `inp w`.
//!
//! There are 7 "push" blocks and 7 "pop" blocks.
//! * Push blocks use `z` as a stack, multiplying by 26 and adding `w` plus some constant `k₁`.
//!   Push blocks always add to the stack.
//! * Pop blocks compare the top element of `z` plus some constant `k₂` to `w`. If the values are
//!   equal then `z` is "popped" by dividing by 26. Otherwise `z` is pushed again with `w`
//!   plus some constant.
//!
//! Since the push/pop blocks are equally numbered and we want `z` to be zero (empty stack) at the
//! end of the program, the condition:
//!
//! `w₁ + k₁ + k₂ = w₂`
//!
//! must be true for each matching pair of push/pop blocks. Since we also know that each `w` is
//! between 1 and 9 inclusive, that is enough information to determine maximum and minimum values
//! for each of the fourteen `w` values.
//!
//! For example:
//! * If `k₁ + k₂ = 7` then `w₁ + 7 = w₂`.
//! * Maximum value of `w₁` is 2 when `w₂` is 9.
//! * Minimum value of `w₁` is 1 when `w₂` is 8.
//!
//! ## Detailed Push block analysis
//!
//! ```none
//!     inp w       // w = 1 to 9 inclusive
//!     mul x 0     // x = 0
//!     add x z     // x = z
//!     mod x 26    // x = z % 26
//!     div z 1     // nop
//!     add x 13    // x = z % 26 + 13
//!     eql x w     // if (z % 26 + 13) == w { x = 1 } else { x = 0 }
//!                 // However since w is restricted to 1 to 9 this condition is always false
//!                 // so x is always 0. Other blocks have different constants but always > 9.
//!     eql x 0     // x = 1 (as 0 == 0)
//!     mul y 0     // y = 0
//!     add y 25    // y = 25
//!     mul y x     // y = 25 * 1 = 25
//!     add y 1     // y = 25 + 1 = 26
//!     mul z y     // z = 26 * z
//!     mul y 0     // y = 0
//!     add y w     // y = w
//!     add y 14    // y = w + 14 (k₁ = 14)
//!     mul y x     // y = (w + 14) * 1 = (w + 14)
//!     add z y     // z = (26 * z) + (w + 14)
//! ```
//!
//! ## Detailed Push block analysis
//!
//! ```none
//!     inp w       // w = 1 to 9 inclusive
//!     mul x 0     // x = 0
//!     add x z     // x = z
//!     mod x 26    // x = z % 26
//!     div z 26    // z /= 26 (pop)
//!     add x -13   // x = z % 26 - 13 (k₂ = -13)
//!     eql x w     // if (z % 26 - 13) == w { x = 1 } else { x = 0 }
//!     eql x 0     // if (z % 26 - 13) == w { x = 0 } else { x = 1 }
//!                 // Inverts the previous conditional.
//!                 // Unlike the push blocks, this may true or false
//!                 // We'll split into 2 paths, depending on equals (x = 0) or
//!                 // not equal (x = 1).
//!                 | Equals (x = 0)        | Not Equals (x = 1)        |
//!     mul y 0     | y = 0                 | y = 0                     |
//!     add y 25    | y = 25                | y = 25                    |
//!     mul y x     | y = 25 * 0 = 0        | y = 25 * 1 = 25           |
//!     add y 1     | y = 0 + 1 = 1         | y = 25 + 1 = 26           |
//!     mul z y     | z = z (nop)           | z = 26 * z                |
//!     mul y 0     | y = 0                 | y = 0                     |
//!     add y w     | y = w                 | y = w                     |
//!     add y 4     | y = w + 4             | y = w + 4                 |
//!     mul y x     | y = (w + 4) * 0       | y = (w + 4) * 1           |
//!     add z y     | z = z                 | z = (26 * z) * (w + 4)    |
//! ```
use crate::util::parse::*;
use Block::*;

/// Blocks are either "push" or "pop".
enum Block {
    Push(i32),
    Pop(i32),
}

/// Convert matching pairs of blocks into constraints.
/// For the first digit `value` is `-(k₁ + k₂)` and second digit value is `k₁ + k₂`.
pub struct Constraint {
    index: usize,
    value: i32,
}

/// Convert `k₁ + k₂` to min and max values, clamping at 1 and 9 respectively.
impl Constraint {
    fn min(&self) -> i32 {
        (1 + self.value).max(1)
    }

    fn max(&self) -> i32 {
        (9 + self.value).min(9)
    }
}

pub fn parse(input: &str) -> Vec<Constraint> {
    let lines: Vec<_> = input.lines().collect();
    let blocks: Vec<_> = lines
        .chunks(18)
        .map(|chunk| {
            // Parse the last token on the specified line within a block.
            let helper = |i: usize| chunk[i].split_ascii_whitespace().last().unwrap().signed();
            // The 5th instruction in "push" blocks is always a `div z 1`
            // that we can use to figure out what type of block we're dealing with.
            if helper(4) == 1 {
                // `k₁` is always located at the 16th instruction.
                Push(helper(15))
            } else {
                // `k₂` is always located at the 6th instruction.
                Pop(helper(5))
            }
        })
        .collect();

    let mut stack = Vec::new();
    let mut constraints = Vec::new();

    for (index, blocks) in blocks.into_iter().enumerate() {
        match blocks {
            Push(value) => stack.push(Constraint { index, value }),
            Pop(second_value) => {
                // Find the matching "push" instruction at the top of the stack.
                let mut first = stack.pop().unwrap();
                // delta = k₁ + k₂
                let delta = first.value + second_value;
                // w₁ + delta = w₂ <=> w₁ = w₂ - delta
                first.value = -delta;
                let second = Constraint { index, value: delta };
                constraints.push(first);
                constraints.push(second);
            }
        }
    }

    // Sort by original ALU program order
    constraints.sort_unstable_by_key(|c| c.index);
    constraints
}

pub fn part1(input: &[Constraint]) -> String {
    input.iter().map(|c| c.max().to_string()).collect()
}

pub fn part2(input: &[Constraint]) -> String {
    input.iter().map(|c| c.min().to_string()).collect()
}