1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
//! # Monkey Map
//!
//! Parses any arbitrary cube map calculating the transitions between faces dynamically
//! using 3D vectors.
//!
//! We build the transitions with a BFS over the connected cube map. The first face we find
//! is labelled A in the diagram below. For each face we define 3 vectors:
//!
//! * `i` Horizontal from left to right in the plane of the face.
//! * `j` Vertical from top to bottom in the plane of the face.
//! * `k` Perpendicular to the face pointing into the body of the cube.
//!
//! ```none
//! k (0, 0, 1)
//! ^
//! /
//! /
//! -------------+
//! / /|
//! / B / |
//! / / |
//! +------------+---->i (1, 0, 0)
//! | | C |
//! | A | /
//! | | /
//! | |/
//! +------------+
//! |
//! |
//! v
//! j (0, 1, 0)
//!
//! ```
//!
//! Then for each neighbouring face we can find its `i`, `j` and `k` vectors depending on which
//! edge it shares in common. For example if we move from face A to face B along the top edge
//! then the new vectors are:
//!
//! * `i` (1, 0, 0) Remains unchanged
//! * `j` (0, 0, -1) Minus previous `k`
//! * `k` (0, 1, 0) Previous `j`
//!
//! If face B and C are connected then the vectors for face C are:
//!
//! * `i` (0, 1, 0)
//! * `j` (0, 0, -1)
//! * `k` (-1, 0, 0)
//!
//! However if A and C were connected then the vectors for face C are:
//!
//! * `i` (0, 0, 1)
//! * `j` (0, 1, 0)
//! * `k` (-1, 0, 0)
//!
//! The really neat part is that when we leave the edge of a cube face the next
//! 3D vector *is always `k`* no matter which edge. We can find the new direction by comparing
//! the previous `k` against the new `i` and `j` vectors.
//!
//! For example say we transition from face `A` to face `B`. Our `k` is (0, 1, 0) which is
//! equal to minus the new `j`, so we know that we're travelling upwards from the bottom edge.
//! Then we can use this information to figure out the two dimensional offsets into the new face.
use crate::util::hash::*;
use crate::util::math::*;
use crate::util::parse::*;
use crate::util::point::*;
use std::collections::VecDeque;
use std::ops::Neg;
#[derive(Clone, Copy, PartialEq, Eq)]
enum Tile {
None,
Open,
Wall,
}
enum Move {
Left,
Right,
Forward(u32),
}
pub struct Grid {
width: usize,
height: usize,
tiles: Vec<Tile>,
start: i32,
block: i32,
}
/// Return [`Tile::None`] for any point out of bounds.
impl Grid {
fn tile(&self, point: Point) -> Tile {
let x = point.x as usize;
let y = point.y as usize;
if (0..self.width).contains(&x) && (0..self.height).contains(&y) {
self.tiles[y * self.width + x]
} else {
Tile::None
}
}
}
/// Minimal 3D vector implementation
#[derive(Copy, Clone, Hash, PartialEq, Eq)]
struct Vector {
x: i32,
y: i32,
z: i32,
}
// Syntactic sugar to implement the `-` operator.
impl Neg for Vector {
type Output = Self;
fn neg(self) -> Self::Output {
Vector { x: -self.x, y: -self.y, z: -self.z }
}
}
/// 2D coordinates of the top left corner plus 3D vectors for the cube face.
#[derive(Clone, Copy)]
struct Face {
corner: Point,
i: Vector,
j: Vector,
k: Vector,
}
pub struct Input {
grid: Grid,
moves: Vec<Move>,
}
pub fn parse(input: &str) -> Input {
let (prefix, suffix) = input.rsplit_once("\n\n").unwrap();
let grid = parse_grid(prefix);
let moves = parse_moves(suffix);
Input { grid, moves }
}
pub fn part1(input: &Input) -> i32 {
let grid = &input.grid;
let block = grid.block;
// Wrap around to the other side of the row or column depending on direction.
let handle_none = |position, direction| {
let reverse = direction * -block;
let mut next = position + reverse;
while grid.tile(next) != Tile::None {
next += reverse;
}
next += direction;
(next, direction)
};
password(input, handle_none)
}
pub fn part2(input: &Input) -> i32 {
let grid = &input.grid;
let block = grid.block;
let edge = block - 1;
// Build the cube map dynamically.
let start = Face {
corner: Point::new(grid.start - grid.start % block, 0),
i: Vector { x: 1, y: 0, z: 0 },
j: Vector { x: 0, y: 1, z: 0 },
k: Vector { x: 0, y: 0, z: 1 },
};
let mut todo = VecDeque::from([start]);
let mut faces = FastMap::build([(start.k, start)]);
let mut corners = FastMap::build([(start.corner, start)]);
while let Some(next) = todo.pop_front() {
let Face { corner, i, j, k } = next;
// Define the transitions from each edge.
let neighbors = [
Face { corner: corner + Point::new(-block, 0), i: -k, j, k: i }, // Left
Face { corner: corner + Point::new(block, 0), i: k, j, k: -i }, // Right
Face { corner: corner + Point::new(0, -block), i, j: -k, k: j }, // Up
Face { corner: corner + Point::new(0, block), i, j: k, k: -j }, // Down
];
// Potentially add the candidate edge to the frontier.
for next in neighbors {
if grid.tile(next.corner) != Tile::None && !faces.contains_key(&next.k) {
todo.push_back(next);
faces.insert(next.k, next);
corners.insert(next.corner, next);
}
}
}
let handle_none = |position: Point, direction| {
// Our (x, y) offset within the face.
let offset = Point::new(position.x % block, position.y % block);
// The (x, y) coordinate of the top left corner of the face.
let corner = position - offset;
// Lookup the 3D vectors associated with the current face.
let Face { i, j, k, .. } = corners[&corner];
// These transitions are the same as used during the BFS above.
let next_k = match direction {
LEFT => i,
RIGHT => -i,
UP => j,
DOWN => -j,
_ => unreachable!(),
};
let Face { corner: next_corner, i: next_i, j: next_j, .. } = faces[&next_k];
// Here's the really neat part. Our new 3D direction will *always* be `k`.
// We can find the relative orientation in the plane of the face by checking against
// `i` and `j`. This also tells us which edge we're entering.
let next_direction = if k == next_i {
RIGHT
} else if k == -next_i {
LEFT
} else if k == next_j {
DOWN
} else if k == -next_j {
UP
} else {
unreachable!()
};
// 4 possible leaving edges and 4 possible entering edges gives 16 total possible
// combinations.
let next_offset = match (direction, next_direction) {
(LEFT, LEFT) => Point::new(edge, offset.y),
(LEFT, RIGHT) => Point::new(0, edge - offset.y),
(LEFT, DOWN) => Point::new(offset.y, 0),
(LEFT, UP) => Point::new(edge - offset.y, edge),
(RIGHT, LEFT) => Point::new(edge, edge - offset.y),
(RIGHT, RIGHT) => Point::new(0, offset.y),
(RIGHT, DOWN) => Point::new(edge - offset.y, 0),
(RIGHT, UP) => Point::new(offset.y, edge),
(DOWN, LEFT) => Point::new(edge, offset.x),
(DOWN, RIGHT) => Point::new(0, edge - offset.x),
(DOWN, DOWN) => Point::new(offset.x, 0),
(DOWN, UP) => Point::new(edge - offset.x, edge),
(UP, LEFT) => Point::new(edge, edge - offset.x),
(UP, RIGHT) => Point::new(0, offset.x),
(UP, DOWN) => Point::new(edge - offset.x, 0),
(UP, UP) => Point::new(offset.x, edge),
_ => unreachable!(),
};
let next_position = next_corner + next_offset;
(next_position, next_direction)
};
password(input, handle_none)
}
fn parse_grid(input: &str) -> Grid {
let raw: Vec<_> = input.lines().map(str::as_bytes).collect();
// Width is the maximum width of any row
let width = raw.iter().map(|line| line.len()).max().unwrap();
let height = raw.len();
let mut tiles = vec![Tile::None; width * height];
// Convert ASCII to enums.
for (y, row) in raw.iter().enumerate() {
for (x, col) in row.iter().enumerate() {
let tile = match col {
b'.' => Tile::Open,
b'#' => Tile::Wall,
_ => Tile::None,
};
tiles[y * width + x] = tile;
}
}
// Find the first open tile in the top row.
let start = tiles.iter().position(|&t| t == Tile::Open).unwrap() as i32;
// Find the size of each face (4 in the sample or 50 in the actual input).
let block = width.gcd(height) as i32;
Grid { width, height, tiles, start, block }
}
fn parse_moves(input: &str) -> Vec<Move> {
let mut moves = Vec::new();
let mut numbers = input.iter_unsigned();
let mut letters = input.bytes().filter(u8::is_ascii_uppercase);
// Numbers and letters alternate, with numbers first.
loop {
let Some(n) = numbers.next() else {
break;
};
moves.push(Move::Forward(n));
let Some(d) = letters.next() else {
break;
};
moves.push(if d == b'L' { Move::Left } else { Move::Right });
}
moves
}
/// Common code shared between part one and two. The `handle_none` closure defines how
/// to transition when we leave an edge.
fn password(input: &Input, handle_none: impl Fn(Point, Point) -> (Point, Point)) -> i32 {
let Input { grid, moves } = input;
let mut position = Point::new(grid.start, 0);
let mut direction = Point::new(1, 0);
for command in moves {
match command {
Move::Left => direction = direction.counter_clockwise(),
Move::Right => direction = direction.clockwise(),
Move::Forward(n) => {
for _ in 0..*n {
let next = position + direction;
match grid.tile(next) {
// Not possible to move any further so we can break out of the loop.
Tile::Wall => break,
// Move within the 2D cube map.
Tile::Open => position = next,
Tile::None => {
let (next_position, next_direction) = handle_none(position, direction);
// The new position on a different face may be a wall.
if grid.tile(next_position) == Tile::Open {
position = next_position;
direction = next_direction;
} else {
break;
}
}
}
}
}
}
}
// Calculate the final score.
let position_score = 1000 * (position.y + 1) + 4 * (position.x + 1);
let direction_score = match direction {
RIGHT => 0,
DOWN => 1,
LEFT => 2,
UP => 3,
_ => unreachable!(),
};
position_score + direction_score
}