1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
//! # Blizzard Basin
//!
//! Similar to the previous day we represent the position of elves and blizzards as bits in an
//! integer in order to efficiently compute the next minute.
//!
//! We further optimize by memoizing the position of blizzards as they repeat
//! every `width` minutes for horizontal and every `height` minutes for vertical.
pub struct Input {
width: usize,
height: usize,
horizontal: Vec<u128>,
vertical: Vec<u128>,
}
pub fn parse(input: &str) -> Input {
// Don't include the left and right walls.
let raw: Vec<_> = input
.lines()
.map(|line| {
let bytes = line.as_bytes();
&bytes[1..(bytes.len() - 1)]
})
.collect();
let width = raw[0].len();
let height = raw.len() - 2;
// For each blizzard type set a `0` bit in the corresponding integer. Later on we can AND this
// with elves to eliminate possible positions.
let build = |kind| -> Vec<_> {
let fold = |row: &&[u8]| row.iter().fold(0, |acc, &b| (acc << 1) | (b != kind) as u128);
raw[1..=height].iter().map(fold).collect()
};
// Process each row.
let left = build(b'<');
let right = build(b'>');
let up = build(b'^');
let down = build(b'v');
// Blizzard patterns repeat every `width` minutes, so we can precompute all possible
// horizontal patterns.
let mut horizontal = Vec::with_capacity(width * height);
for time in 0..width {
for i in 0..height {
let left = left[i] << time | left[i] >> (width - time);
let right = right[i] >> time | right[i] << (width - time);
horizontal.push(left & right);
}
}
// Similarly vertical blizzards repeat every `height` minutes so precompute to save time later.
let mut vertical = Vec::with_capacity(height * height);
for time in 0..height {
for i in 0..height {
let up = up[(i + time) % height];
let down = down[(height + i - time % height) % height];
vertical.push(up & down);
}
}
Input { width, height, horizontal, vertical }
}
pub fn part1(input: &Input) -> usize {
expedition(input, 0, true)
}
pub fn part2(input: &Input) -> usize {
let first = expedition(input, 0, true);
let second = expedition(input, first, false);
expedition(input, second, true)
}
fn expedition(input: &Input, start: usize, forward: bool) -> usize {
let Input { width, height, horizontal, vertical } = input;
let mut time = start;
let mut state = vec![0; height + 1];
loop {
time += 1;
// We modify the state in-place as we process each row, so preserve the previous state
// for subsequent calculations.
let mut prev;
let mut cur = 0;
let mut next = state[0];
for i in 0..*height {
prev = cur;
cur = next;
next = state[i + 1];
// The Elves frontier can spread out 1 in each orthogonal direction unless there
// is a blizzard present.
state[i] = (cur | cur >> 1 | cur << 1 | prev | next)
& horizontal[height * (time % width) + i]
& vertical[height * (time % height) + i];
}
// Depending on the direction elves can wait indefinitely in the start or end positions.
if forward {
// Start position.
state[0] |= 1 << (width - 1);
// If we reached the end then stop.
if state[height - 1] & 1 != 0 {
break time + 1;
}
} else {
// End position.
state[height - 1] |= 1;
// If we've reached the start then stop.
if state[0] & 1 << (width - 1) != 0 {
break time + 1;
}
}
}
}