1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
//! # Wait For It
//!
//! We can solve analytically using the quadratic formula.
//! * `x` is time spent holding the button.
//! * `t` is the duration of the race.
//! * `d` is the record distance.
//!
//! Then the distance travelled is:
//!
//! * `x * (t - x)`
//!
//! To beat the record the following conditition must hold:
//!
//! * `x * (t - x) = d`
//! * `x² - tx +d = 0`
//!
//! The start and end times where we will be the record are given by the roots of the
//! quadratic equation which we can solve using the
//! [quadratic formula](https://en.wikipedia.org/wiki/Quadratic_formula).
//!
//! * `(t ± √(t² - 4d)) / 2`
use crate::util::math::*;
use crate::util::parse::*;
pub fn parse(input: &str) -> Vec<&str> {
input.lines().collect()
}
pub fn part1(input: &[&str]) -> u128 {
race(input[0], input[1])
}
pub fn part2(input: &[&str]) -> u128 {
race(&merge(input[0]), &merge(input[1]))
}
fn merge(line: &str) -> String {
line.chars().filter(char::is_ascii_digit).collect()
}
fn race(first: &str, second: &str) -> u128 {
let times = first.iter_unsigned::<u128>();
let distances = second.iter_unsigned::<u128>();
let mut result = 1;
for (time, distance) in times.zip(distances) {
// Use the quadratic formula to find the start and end positions.
let root = (time * time - 4 * distance).sqrt();
let mut start = (time - root).div_ceil(2);
let mut end = (time + root) / 2;
// As we're using integer math we may need to adjust 1 step.
if start * (time - start) > distance {
start -= 1;
}
if end * (time - end) > distance {
end += 1;
}
result *= end - start - 1;
}
result
}