1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
//! # Parabolic Reflector Dish
//!
//! To solve part two we look for a cycle where the dish returns to a previously seen state.
//! By storing each dish and a index in a `HashMap` we can calculate the offset and length of the
//! cycle then use that to find to state at the billionth step.
//!
//! Calculating the state needs to be done sequentially so we use some tricks to make it as fast as
//! possible.
//!
//! First the location of each each ball is stored in a `vec`. My input had ~2,000 balls compared to
//! 10,000 grid squares total, so this approach reduces the amount of data to scan by 5x. The 2D
//! coordinates are converted so a 1D number, for example the index of a ball on the second row
//! second column would be 1 * 100 + 1 = 101.
//!
//! Next for each possible tilt orientation (north, south, east and west) an approach similar to a
//! prefix sum is used. Each edge or fixed rock is assigned an index. We expand the grid by 2 in
//! each direction (one for each edge) to handles the edges. For example, using west (left):
//!
//! ```none
//! ..#.#..
//! ```
//!
//! is represented in `fixed_west` as (noticing the extra 0 for the left edge)
//!
//! ```none
//! 0 0 0 1 1 2 2 2
//! ```
//!
//! The the number of balls the come to rest against each fixed point is counted, for example:
//!
//! ```none
//! OO#.#OO
//! ```
//!
//! is stored in `roll_west` similar to:
//!
//! ```none
//! 2 0 2
//! ```
//!
//! This approach has two huge advantages:
//!
//! First, the number of balls resting against each fixed point completely represents the state of the
//! grid in a very compact format. For example my input has ~1600 fixed points. Using 2 bytes per
//! point needs 3.2K total to represent the grid, compared to 100 * 100 = 10K for the simple approach.
//! 3x less data is 3x faster to hash when storing states in a `HashMap` looking for duplicates.
//!
//! Second, calculating the new position of a ball is very fast. For each ball:
//!
//! * Use `fixed_*` to lookup the index in the corresponding `roll_*` vec.
//! * This stores the current index of the last ball resting against that fixed point.
//! * Increment this value by ±1 for horizontal movement or ±width for vertical movement
//! and then update the new location of this ball.
//!
//! For example, tilting a single row west, processing each ball from left to right where each line
//! represent the new state would look like:
//!
//! ```none
//! grid rounded fixed_west roll_west
//! .O#..O.OO.#..O [1 5 7 8 13] [0 0 1 1 1 1 1 1 1 1 2 2 2 2] [-1 2 10]
//! O.#..O.OO.#..O [0 5 7 8 13] [0 0 1 1 1 1 1 1 1 1 2 2 2 2] [0 2 10]
//! O.#O...OO.#..O [0 3 7 8 13] [0 0 1 1 1 1 1 1 1 1 2 2 2 2] [0 3 10]
//! O.#OO...O.#..O [0 3 4 8 13] [0 0 1 1 1 1 1 1 1 1 2 2 2 2] [0 4 10]
//! O.#OOO....#..O [0 3 4 5 13] [0 0 1 1 1 1 1 1 1 1 2 2 2 2] [0 5 10]
//! O.#OOO....#O.. [0 3 4 5 11] [0 0 1 1 1 1 1 1 1 1 2 2 2 2] [0 5 11]
//! ```
use crate::util::grid::*;
use crate::util::hash::*;
use crate::util::point::*;
pub struct Input {
width: i32,
height: i32,
// Index of each ball.
rounded: Vec<i16>,
// Index into corresponding `roll_` vec for each possible grid location.
fixed_north: Vec<i16>,
fixed_west: Vec<i16>,
fixed_south: Vec<i16>,
fixed_east: Vec<i16>,
// The current index of the ball resting against each fixed point.
roll_north: Vec<i16>,
roll_west: Vec<i16>,
roll_south: Vec<i16>,
roll_east: Vec<i16>,
}
pub fn parse(input: &str) -> Input {
// Expand the grid by 2 in each direction to handle edges the same way as fixed points.
let inner = Grid::parse(input);
let mut grid = Grid::new(inner.width + 2, inner.height + 2, b'#');
// Copy inner grid.
for y in 0..inner.width {
for x in 0..inner.width {
let src = Point::new(x, y);
let dst = Point::new(x + 1, y + 1);
grid[dst] = inner[src];
}
}
let mut rounded = Vec::new();
let mut north = grid.default_copy();
let mut west = grid.default_copy();
let mut south = grid.default_copy();
let mut east = grid.default_copy();
let mut roll_north = Vec::new();
let mut roll_west = Vec::new();
let mut roll_south = Vec::new();
let mut roll_east = Vec::new();
// Starting index of each rounded ball.
for y in 0..grid.height {
for x in 0..grid.width {
let point = Point::new(x, y);
if grid[point] == b'O' {
rounded.push((grid.width * point.y + point.x) as i16);
}
}
}
// For each direction, store the next index that a ball will roll to in that direction.
// North
for x in 0..grid.width {
for y in 0..grid.height {
let point = Point::new(x, y);
if grid[point] == b'#' {
roll_north.push((grid.width * point.y + point.x) as i16);
}
north[point] = (roll_north.len() - 1) as i16;
}
}
// West
for y in 0..grid.height {
for x in 0..grid.width {
let point = Point::new(x, y);
if grid[point] == b'#' {
roll_west.push((grid.width * point.y + point.x) as i16);
}
west[point] = (roll_west.len() - 1) as i16;
}
}
// South
for x in 0..grid.width {
for y in (0..grid.height).rev() {
let point = Point::new(x, y);
if grid[point] == b'#' {
roll_south.push((grid.width * point.y + point.x) as i16);
}
south[point] = (roll_south.len() - 1) as i16;
}
}
// East
for y in 0..grid.height {
for x in (0..grid.width).rev() {
let point = Point::new(x, y);
if grid[point] == b'#' {
roll_east.push((grid.width * point.y + point.x) as i16);
}
east[point] = (roll_east.len() - 1) as i16;
}
}
Input {
width: grid.width,
height: grid.height,
rounded,
fixed_north: north.bytes,
fixed_west: west.bytes,
fixed_south: south.bytes,
fixed_east: east.bytes,
roll_north,
roll_west,
roll_south,
roll_east,
}
}
pub fn part1(input: &Input) -> i32 {
let Input { width, height, fixed_north, roll_north, .. } = input;
// Tilt north only once.
let mut result = 0;
let rounded = &mut input.rounded.clone();
let state = tilt(rounded, fixed_north, roll_north, *width as i16);
// Find vertical distance of each ball from the bottom, remembering that the grid is 2 bigger.
for (&a, &b) in input.roll_north.iter().zip(state.iter()) {
for index in (a..b).step_by(input.width as usize) {
let y = (index as i32) / width;
result += height - 2 - y;
}
}
result
}
pub fn part2(input: &Input) -> i32 {
let Input { width, height, .. } = input;
let rounded = &mut input.rounded.clone();
let mut seen = FastMap::with_capacity(100);
// Simulate tilting until a cycle is found.
let (start, end) = loop {
tilt(rounded, &input.fixed_north, &input.roll_north, *width as i16);
tilt(rounded, &input.fixed_west, &input.roll_west, 1);
tilt(rounded, &input.fixed_south, &input.roll_south, -(*width) as i16);
let state = tilt(rounded, &input.fixed_east, &input.roll_east, -1);
if let Some(previous) = seen.insert(state, seen.len()) {
break (previous, seen.len());
}
};
// Find the index of the state after 1 billion repetitions.
let offset = 1_000_000_000 - 1 - start;
let cycle_width = end - start;
let remainder = offset % cycle_width;
let target = start + remainder;
let (state, _) = seen.iter().find(|(_, &i)| i == target).unwrap();
let mut result = 0;
for (&a, &b) in input.roll_east.iter().zip(state.iter()) {
// Number of balls resting against the fixed point.
let n = (a - b) as i32;
// Distance from bottom.
let y = (a as i32) / width;
// Total load.
result += n * (height - 1 - y);
}
result
}
/// Very fast calculation of new state after tilting in the specified direction.
fn tilt(rounded: &mut [i16], fixed: &[i16], roll: &[i16], direction: i16) -> Vec<i16> {
let mut state = roll.to_vec();
for rock in rounded {
let index = fixed[*rock as usize] as usize;
state[index] += direction;
*rock = state[index];
}
state
}