1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
//! # Parabolic Reflector Dish
//!
//! To solve part two we look for a cycle where the dish returns to a previously seen state.
//! By storing each dish and a index in a `HashMap` we can calculate the offset and length of the
//! cycle then use that to find to state at the billionth step.
//!
//! Calculating the state needs to be done sequentially so we use some tricks to make it as fast as
//! possible.
//!
//! First the location of each each ball is stored in a `vec`. My input had ~2,000 balls compared to
//! 10,000 grid squares total, so this approach reduces the amount of data to scan by 5x. The 2D
//! coordinates are converted so a 1D number, for example the index of a ball on the second row
//! second column would be 1 * 100 + 1 = 101.
//!
//! Next for each possible tilt orientation (north, south, east and west) an approach similar to a
//! prefix sum is used. Each edge or fixed rock is assigned an index. We expand the grid by 2 in
//! each direction (one for each edge) to handles the edges. For example, using west (left):
//!
//! ```none
//!     ..#.#..
//! ```
//!
//! is represented in `fixed_west` as (noticing the extra 0 for the left edge)
//!
//! ```none
//!     0 0 0 1 1 2 2 2
//! ```
//!
//! The the number of balls the come to rest against each fixed point is counted, for example:
//!
//! ```none
//!     OO#.#OO
//! ```
//!
//! is stored in `roll_west` similar to:
//!
//! ```none
//!    2 0 2
//! ```
//!
//! This approach has two huge advantages:
//!
//! First, the number of balls resting against each fixed point completely represents the state of the
//! grid in a very compact format. For example my input has ~1600 fixed points. Using 2 bytes per
//! point needs 3.2K total to represent the grid, compared to 100 * 100 = 10K for the simple approach.
//! 3x less data is 3x faster to hash when storing states in a `HashMap` looking for duplicates.
//!
//! Second, calculating the new position of a ball is very fast. For each ball:
//!
//! * Use `fixed_*` to lookup the index in the corresponding `roll_*` vec.
//! * This stores the current index of the last ball resting against that fixed point.
//! * Increment this value by ±1 for horizontal movement or ±width for vertical movement
//!   and then update the new location of this ball.
//!
//! For example, tilting a single row west, processing each ball from left to right where each line
//! represent the new state would look like:
//!
//! ```none
//!    grid              rounded         fixed_west                       roll_west
//!    .O#..O.OO.#..O    [1 5 7 8 13]    [0 0 1 1 1 1 1 1 1 1 2 2 2 2]    [-1 2 10]
//!    O.#..O.OO.#..O    [0 5 7 8 13]    [0 0 1 1 1 1 1 1 1 1 2 2 2 2]    [0 2 10]
//!    O.#O...OO.#..O    [0 3 7 8 13]    [0 0 1 1 1 1 1 1 1 1 2 2 2 2]    [0 3 10]
//!    O.#OO...O.#..O    [0 3 4 8 13]    [0 0 1 1 1 1 1 1 1 1 2 2 2 2]    [0 4 10]
//!    O.#OOO....#..O    [0 3 4 5 13]    [0 0 1 1 1 1 1 1 1 1 2 2 2 2]    [0 5 10]
//!    O.#OOO....#O..    [0 3 4 5 11]    [0 0 1 1 1 1 1 1 1 1 2 2 2 2]    [0 5 11]
//! ```
use crate::util::grid::*;
use crate::util::hash::*;
use crate::util::point::*;

pub struct Input {
    width: i32,
    height: i32,
    // Index of each ball.
    rounded: Vec<i16>,
    // Index into corresponding `roll_` vec for each possible grid location.
    fixed_north: Vec<i16>,
    fixed_west: Vec<i16>,
    fixed_south: Vec<i16>,
    fixed_east: Vec<i16>,
    // The current index of the ball resting against each fixed point.
    roll_north: Vec<i16>,
    roll_west: Vec<i16>,
    roll_south: Vec<i16>,
    roll_east: Vec<i16>,
}

pub fn parse(input: &str) -> Input {
    // Expand the grid by 2 in each direction to handle edges the same way as fixed points.
    let inner = Grid::parse(input);
    let mut grid = Grid::new(inner.width + 2, inner.height + 2, b'#');

    // Copy inner grid.
    for y in 0..inner.width {
        for x in 0..inner.width {
            let src = Point::new(x, y);
            let dst = Point::new(x + 1, y + 1);
            grid[dst] = inner[src];
        }
    }

    let mut rounded = Vec::new();
    let mut north = grid.default_copy();
    let mut west = grid.default_copy();
    let mut south = grid.default_copy();
    let mut east = grid.default_copy();
    let mut roll_north = Vec::new();
    let mut roll_west = Vec::new();
    let mut roll_south = Vec::new();
    let mut roll_east = Vec::new();

    // Starting index of each rounded ball.
    for y in 0..grid.height {
        for x in 0..grid.width {
            let point = Point::new(x, y);
            if grid[point] == b'O' {
                rounded.push((grid.width * point.y + point.x) as i16);
            }
        }
    }

    // For each direction, store the next index that a ball will roll to in that direction.

    // North
    for x in 0..grid.width {
        for y in 0..grid.height {
            let point = Point::new(x, y);
            if grid[point] == b'#' {
                roll_north.push((grid.width * point.y + point.x) as i16);
            }
            north[point] = (roll_north.len() - 1) as i16;
        }
    }

    // West
    for y in 0..grid.height {
        for x in 0..grid.width {
            let point = Point::new(x, y);
            if grid[point] == b'#' {
                roll_west.push((grid.width * point.y + point.x) as i16);
            }
            west[point] = (roll_west.len() - 1) as i16;
        }
    }

    // South
    for x in 0..grid.width {
        for y in (0..grid.height).rev() {
            let point = Point::new(x, y);
            if grid[point] == b'#' {
                roll_south.push((grid.width * point.y + point.x) as i16);
            }
            south[point] = (roll_south.len() - 1) as i16;
        }
    }

    // East
    for y in 0..grid.height {
        for x in (0..grid.width).rev() {
            let point = Point::new(x, y);
            if grid[point] == b'#' {
                roll_east.push((grid.width * point.y + point.x) as i16);
            }
            east[point] = (roll_east.len() - 1) as i16;
        }
    }

    Input {
        width: grid.width,
        height: grid.height,
        rounded,
        fixed_north: north.bytes,
        fixed_west: west.bytes,
        fixed_south: south.bytes,
        fixed_east: east.bytes,
        roll_north,
        roll_west,
        roll_south,
        roll_east,
    }
}

pub fn part1(input: &Input) -> i32 {
    let Input { width, height, fixed_north, roll_north, .. } = input;

    // Tilt north only once.
    let mut result = 0;
    let rounded = &mut input.rounded.clone();
    let state = tilt(rounded, fixed_north, roll_north, *width as i16);

    // Find vertical distance of each ball from the bottom, remembering that the grid is 2 bigger.
    for (&a, &b) in input.roll_north.iter().zip(state.iter()) {
        for index in (a..b).step_by(input.width as usize) {
            let y = (index as i32) / width;
            result += height - 2 - y;
        }
    }

    result
}

pub fn part2(input: &Input) -> i32 {
    let Input { width, height, .. } = input;

    let rounded = &mut input.rounded.clone();
    let mut seen = FastMap::with_capacity(100);

    // Simulate tilting until a cycle is found.
    let (start, end) = loop {
        tilt(rounded, &input.fixed_north, &input.roll_north, *width as i16);
        tilt(rounded, &input.fixed_west, &input.roll_west, 1);
        tilt(rounded, &input.fixed_south, &input.roll_south, -(*width) as i16);
        let state = tilt(rounded, &input.fixed_east, &input.roll_east, -1);

        if let Some(previous) = seen.insert(state, seen.len()) {
            break (previous, seen.len());
        }
    };

    // Find the index of the state after 1 billion repetitions.
    let offset = 1_000_000_000 - 1 - start;
    let cycle_width = end - start;
    let remainder = offset % cycle_width;
    let target = start + remainder;

    let (state, _) = seen.iter().find(|(_, &i)| i == target).unwrap();
    let mut result = 0;

    for (&a, &b) in input.roll_east.iter().zip(state.iter()) {
        // Number of balls resting against the fixed point.
        let n = (a - b) as i32;
        // Distance from bottom.
        let y = (a as i32) / width;
        // Total load.
        result += n * (height - 1 - y);
    }

    result
}

/// Very fast calculation of new state after tilting in the specified direction.
fn tilt(rounded: &mut [i16], fixed: &[i16], roll: &[i16], direction: i16) -> Vec<i16> {
    let mut state = roll.to_vec();

    for rock in rounded {
        let index = fixed[*rock as usize] as usize;
        state[index] += direction;
        *rock = state[index];
    }

    state
}