aoc/year2024/day07.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
//! # Bridge Repair
//!
//! The equations can be validated using a recursive solution that checks all possible combinations
//! of operators. However the number of states to check grows exponentially as 2ⁿ in part one
//! and 3ⁿ in part two.
//!
//! As much faster approach works in reverse from the end of the equation to prune as many states
//! as possible by checking which operations are possible. For example:
//!
//! ```none
//! Test Value: 123456
//! Equation: 2 617 56
//! Addition is possible as 123456 >= 56
//! Multiplication is not possible as 56 is not a factor of 123456
//! Concatenation is possible as 1234 || 56 = 123456
//! ```
//!
//! Following the concatenation branch and applying an inverse concentation
//! (the full solution would also follow the addition branch):
//!
//! ```none
//! Test Value: 1234
//! Equation: 2 617
//! Addition is possible as 1234 >= 617
//! Multiplication is possible as 2 * 617 = 1234
//! Concatenation is not possible as 1234 does not end in 617
//! ```
//!
//! Following the multiplication branch:
//!
//! ```none
//! Test Value: 2
//! Equation: 2
//! ```
//!
//! The test value is equal to the last term which means that the equation is valid.
//!
//! Inverse concenation can be implemented without time consuming conversion to or from
//! strings by dividing the left term by the next power of ten greater than the right term.
//! For example:
//!
//! * 7 || 9 => 79 => 79 / 10 => 7
//! * 12 || 34 => 1234 => 1234 / 100 => 12
//! * 123 || 789 => 123789 => 123789 / 1000 => 123
use crate::util::parse::*;
type Input = (u64, u64);
pub fn parse(input: &str) -> Input {
let mut equation = Vec::new();
let mut part_one = 0;
let mut part_two = 0;
for line in input.lines() {
equation.extend(line.iter_unsigned::<u64>());
// If an equation is valid for part one then it's also valid for part two.
if valid(&equation, equation[0], equation.len() - 1, false) {
part_one += equation[0];
part_two += equation[0];
} else if valid(&equation, equation[0], equation.len() - 1, true) {
part_two += equation[0];
}
equation.clear();
}
(part_one, part_two)
}
pub fn part1(input: &Input) -> u64 {
input.0
}
pub fn part2(input: &Input) -> u64 {
input.1
}
fn valid(terms: &[u64], test_value: u64, index: usize, concat: bool) -> bool {
if index == 1 {
test_value == terms[1]
} else {
(concat
&& test_value % next_power_of_ten(terms[index]) == terms[index]
&& valid(terms, test_value / next_power_of_ten(terms[index]), index - 1, concat))
|| (test_value % terms[index] == 0
&& valid(terms, test_value / terms[index], index - 1, concat))
|| (test_value >= terms[index]
&& valid(terms, test_value - terms[index], index - 1, concat))
}
}
#[inline]
fn next_power_of_ten(n: u64) -> u64 {
if n < 10 {
10
} else if n < 100 {
100
} else {
1000
}
}